
P a g e | 1

Assembly Language Programming

Lecture Notes CS401

MC180402118

MIT DEPARTMENT

what is Basic Computer Architecture?

2 Basic Computer Architecture. The main components in a typical computer system are the

processor, memory, input/output devices, and the communication channels that connect them. ... In a

typical system there will be only one processor, known at the central processing unit, or CPU.

P a g e | 2

What is a computer program?

A Program is a set of instructions compiled together in a file to perform some specific task by the CPU

(Central Processing Unit). It is a series of binary numbers (0s and 1s) arranged in a sequence, which

when given to the computer performs some task.

Computer is a dumb machine with expeditious computational speed. It can give quick results to many

of the complex scientific calculations but it can’t perform a task on its own. A computer needs set of

 I/O

PROCESSOR
MEMORY

P a g e | 3

instructions to do some task. This set of instructions is contained in a computer program. Computer

program is basically in binary language i.e. series of 0s and 1s. A large bunch of programs makes the

computer functional without which the computer would be like a paralyzed machine.

You may think computer as an idiot person who does not know to cook. If you provide ingredients for

cooking Pasta to that idiot person, you cannot expect a delicious dish. However, if you provide

ingredients along with the full step-by-step recipe of cooking Pasta then you may expect a

real Pasta from that idiot person. Same is the concept with computers, for computers the ingredients

are data (might be an integer, string, images, videos or anything) and the recipe is a program.

What is Programming?

Programming is the process of writing an algorithm into a sequence of computer instructions. Or you

can simply say it is the process of writing programs. We generally transform the solution of a specific

problem into computer language. It is the only way through which we can create our own programs

and can execute them on a computer. Programming requires skill, logical thinking and lots of

experience.

 The world’s first programmer was Ada Lovelace. She was widely known for her work on

Charles Babbage’s Analytical Engine (general-purpose mechanical computer).

https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Analytical_Engine

P a g e | 4

 World's first programmer - Ada Lovelace

What is assembly language example?

Assembly language is an example of low-level language. In an assembly language, each

machine language instruction is assigned a code. So, instead of having to remember a string of 0's

and 1's, the programmer would only need to remember short codes like ADD, SUB, DIV, JMP,

MOV, HALT, GO called mnemonics.

What is machine code or language?

Machine code is a computer program written in machine language instructions that can be executed

directly by a computer's central processing unit.

P a g e | 5

a computer programming language consisting of binary or hexadecimal instructions which a

computer can respond to directly.

What is machine language example?

Below is an example of machine language (binary) for the text "Hello World". 01001000

01100101 01101100 01101100 01101111 00100000 01010111 01101111 01110010 01101100

01100100. Below is another example of machine language(non-binary), which will print the letter

"A" 1000 times to the computer screen.

what is low level and high-level programming language?

A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that

enables a programmer to write programs that are more or less independent of a particular type of

computer. ... In contrast, assembly languages are considered low-level because they are very close

to machine languages.

DIFFERENCE BETWEEN THE HIGH AND THE LOW-LEVEL LANGUAGE:

Low level language is machine readable form of program. Whereas the high level language will

be in human readable form... ... High level language uses compilers and interpreters which

requires large memory space.

P a g e | 6

What are the advantages and disadvantages of low level and high-level programming

languages?

Advantages of low-level languages. Programs developed using low level languages

are fast and memory efficient. Programmers can utilize processor and memory in better way using

a low-level language. There is no need of any compiler or interpreters to translate the source to

machine code.

Low level language abbreviated as LLL, are languages close to the machine level instruction set. They

provide less or no abstraction from the hardware. A low-level programming language interacts directly

with the registers and memory. Since, instructions written in low level languages are machine

dependent. Programs developed using low level languages are machine dependent and are not

portable.

Low level language does not require any compiler or interpreter to translate the source to machine

code. An assembler may translate the source code written in low level language to machine code.

Programs written in low level languages are fast and memory efficient. However, it is nightmare for

programmers to write, debug and maintain low-level programs. They are mostly used to develop

operating systems, device drivers, databases and applications that requires direct hardware access.

Low level languages are further classified in two more categories – Machine language and assembly

language.

P a g e | 7

Machine language

Machine language is closest language to the hardware. It consists set of instructions that are executed

directly by the computer. These instructions are a sequence of binary bits. Each instruction performs

a very specific and small task. Instructions written in machine language are machine dependent and

varies from computer to computer.

Example: SUB AX, BX = 00001011 00000001 00100010 is an instruction set to subtract values of

two registers AX and BX.

In the starting days of programming, program was only written in machine language. Each and every

program were written as a sequence of binaries.

P a g e | 8

A Programmer must have additional knowledge about the architecture of the particular machine,

before programming in machine language. Developing programs using machine language is tedious

job. Since, it is very difficult to remember sequence of binaries for different computer architectures.

Therefore, nowadays it is not much in practice.

Assembly language

Assembly language is an improvement over machine language. Similar to machine language,

assembly language also interacts directly with the hardware. Instead of using raw binary sequence to

represent an instruction set, assembly language uses mnemonics.

Mnemonics are short abbreviated English words used to specify a computer instruction. Each

instruction in binary has a specific mnemonic. They are architecture dependent and there is a list of

separate mnemonics for different computer architectures.

Examples of mnemonics are – ADD, MOV, SUB etc.

Mnemonics gave relief to the programmers from remembering binary sequence for specific

instructions. As English words like ADD, MOV, SUB is easy to remember, than binary sequence

10001011. However, programmer still have to remember various mnemonics for different computer

architectures.

Assembly language uses a special program called assembler. Assembler translates mnemonics to

specific machine code.

Assembly language is still in use. It is used for developing operating systems, device drivers, compilers

and other programs that requires direct hardware access.

P a g e | 9

Advantages of low-level languages

1. Programs developed using low level languages are fast and memory efficient.

2. Programmers can utilize processor and memory in better way using a low-level language.

3. There is no need of any compiler or interpreters to translate the source to machine code. Thus, cuts the

compilation and interpretation time.

4. Low level languages provide direct manipulation of computer registers and storage.

5. It can directly communicate with hardware devices.

Disadvantages of low-level languages

1. Programs developed using low level languages are machine dependent and are not portable.

2. It is difficult to develop, debug and maintain.

3. Low level programs are more error prone.

4. Low level programming usually results in poor programming productivity.

5. Programmer must have additional knowledge of the computer architecture of particular machine, for

programming in low level language.

High level languages – advantages and disadvantages

High level language is abbreviated as HLL. High level languages are similar to the human language.

Unlike low level languages, high level languages are programmers friendly, easy to code, debug and

maintain.

P a g e | 10

High level language provides higher level of abstraction from machine language. They do not interact

directly with the hardware. Rather, they focus more on the complex arithmetic operations, optimal

program efficiency and easiness in coding.

Low level programming uses machine friendly language. Programmers writes code either in binary or

assembly language. Writing programs in binary is complex and cumbersome process. Hence, to make

programming more programmers friendly. Programs in high level language is written using English

statements.

High level programs require compilers/interpreters to translate source code to machine language. We

can compile the source code written in high level language to multiple machine languages. Thus, they

are machine independent language.

Today almost all programs are developed using a high-level programming language. We can develop

a variety of applications using high level language. They are used to develop desktop applications,

websites, system software’s, utility software’s and many more.

High level languages are grouped in two categories based on execution model – compiled or

interpreted languages.

P a g e | 11

We can also classify high level language several other categories based on programming paradigm

https://codeforwin.org/2017/05/various-programming-paradigms.html

P a g e | 12

Advantages of High-level language

1. High level languages are programmer friendly. They are easy to write, debug and maintain.

2. It provides higher level of abstraction from machine languages.

3. It is machine independent language.

4. Easy to learn.

5. Less error prone, easy to find and debug errors.

6. High level programming results in better programming productivity.

Disadvantages of High-level language

1. It takes additional translation times to translate the source to machine code.

2. High level programs are comparatively slower than low level programs.

3. Compared to low level programs, they are generally less memory efficient.

4. Cannot communicate directly with the hardware.

Differences between low level and high-level programming language.

Summing up the differences between low level and high-level programming language.

P a g e | 13

Low level language High level language

They are faster than high level language. They are comparatively slower.

Low level languages are memory efficient. High level languages are not memory efficient.

Low level languages are difficult to learn. High level languages are easy to learn.

Programming in low level requires additional

knowledge of the computer architecture.

Programming in high level do not require any

additional knowledge of the computer

architecture.

They are machine dependent and are not

portable.

They are machine independent and portable.

P a g e | 14

They provide less or no abstraction from the

hardware.

They provide high abstraction from the hardware.

They are more error prone. They are less error prone.

Debugging and maintenance is difficult.

Debugging and maintenance is comparatively

easier.

They are generally used for developing system

software’s (Operating systems) and embedded

applications.

They are used to develop a variety of applications

such as – desktop applications, websites, mobile

software’s etc.

P a g e | 15

WHAT IS REGISTER?

P a g e | 16

a register is a small bit of memory that sits inside the CPU. and is used by assembly language to

perform various tasks. ... Well, you have general purpose registers, then you have registers which

have special usage (for example, the program counter registers), and you have various others

(memory/segment registers, SSE)

How many registers are in assembly language?

A register is a part of the processor that can hold a bit pattern. On the MIPS, a register holds 32 bits.

There are many registers in the processor, but only some of them are visible in assembly language.

The others are used by the processor in carrying out its operations.

What is the purpose of registers in CPU?

A processor register (CPU register) is one of a small set of data holding places that are part of

the computer processor. A register may hold an instruction, a storage address, or any kind of data

(such as a bit sequence or individual characters). Some instructions specify registers as part of the

instruction.

How many bytes can a register hold?

P a g e | 17

a 64-bit processor has 8-byte-wide registers and a 32-bit processor has 4-byte-wide registers, but

when those registers are copied into RAM it's just bytes in memory.

What are the uses of registers?

General purpose register are used to arithmetic (+, -, *,) and logic (>, <=,) operations. Typically,

these register are 8-32 bit registers. Accumulator is general purpose register and is used by CPU for

performing arithmetic and logic operations and to hold the result of those operations.

What is the purpose of registers?

Purpose of registers. As stated on the previous page, Definition: A register is a discrete memory

location within the CPU designed to hold temporary data and instructions. When a register is being

used to move data /instructions from one part of the system to another, this is called a buffer.

Are registers memory?

Registers are the memory locations that are directly accessible by the processor. The registers hold

the instruction or operands that is currently being accessed by the CPU. Registers are the high-speed

accessible storage elements. The processor accesses the registers within one CPU clock cycle

What are the four general purpose registers and their functions?

P a g e | 18

The registers inside the 8086 are all 16 bits. They are split up into four categories: General

Purpose, Index, Status & Control, and Segment. The four general purpose registers are the AX,

BX, CX, and DX registers. AX - accumulator, and preferred for most operations.

What is special purpose register?

Special purpose registers (SPR) hold program state; they usually include the program counter (aka

instruction pointer), stack pointer, and status register (aka processor status word). In embedded

microprocessors, they can also correspond to specialized hardware elements

Types:

Processor register: Special purpose registers (SPR) hold program state; they usually include the

program counter (aka instruction pointer), stack pointer, and status register (aka processor status

word). In embedded microprocessors, they can also correspond to specialized hardware elements

What is the total size of general-purpose registers?

These registers may be 8/16/32/64/128-bit depending on its use and architecture of an electronic

part where it is used (like microprocessor or RAM). The general-purpose register can store a data

P a g e | 19

or a memory location address. Hence called as General-purpose register. It is a

multipurpose register.

What is the difference between main memory and registers?

The primary difference between register and memory is that register holds the data that the CPU

is currently processing whereas, the memory holds the data the that will be required for processing.

... On the other hands, memory is referred as the main memory of the computer which is RAM.

What are the 4 general and 4 special purpose registers and their function for x86?

The registers viewed as “general-purpose” are EAX, ECX, EDX, and EBX; the registers viewed as

“special purpose” are ESP, EBP, ESI, and EDI.

EAX: Basically, the “main register” for everything. It also forms the lower 32 bits of instructions

that deal with 64-bit integers. Also, this register is hard-coded into instruction forms like 05 Id: add

eax, Id, which is only five bytes long, as compared to instructions that deal with other registers,

which can be six to seven bytes long.

ECX: Loop counter! Some instructions like JECXZ and LOOP deal with the ECX register

exclusively, and this can be a boon if you have some flags state that you don’t want to trash.

EDX: The upper 32 bits of the 64-bit number returned in those 64-bit instructions.

EBX: The “base register”.

P a g e | 20

• Note: This is the only “general-purpose register” addressing mode available in 16-bit mode.

• ESP: Stack pointer. Messing with this one can lead to disaster.

• EBP: Base pointer. Unlike other any other register, no instruction specifically modifies this

register, unless it’s ENTER or LEAVE, which are not used a lot these days. However, this

register is often used to get arguments off the stack.

• ESI: String Source index. Used with the string instructions. Other than that, it can be used as

general purpose

• EDI: String Destination index. See above.

FROM OTHER SOURCE

general purpose registers

 General purpose registers can be used as either data or address registers.

• DEC VAX: 16 word (32 bit) general purpose registers; named R0 through R15

• IBM 360/370: 16 full word (32 bit) general purpose registers; named 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A (or 10), B (or 11), C (or 12), D (or 13), E (or 14), and F (or 15)

• Intel 8086/80286: 8 word (16 bit) general purpose registers; named AX, BX, CX, DX, BP, SP,

SI, and DI (high order bytes of the AX, BX, CX, and DX registers have the names AH, BH,

CH, and DH and low order bytes of the AX, BX, CX, and DX registers have the names AL,

BL, CL, and DL)

P a g e | 21

• Intel 80386: 8 doubleword (32 bit) general purpose registers; named EAX, EBX, ECX, EDX,

EBP, ESP, ESI, and EDI (low order words use the same names as the general purpose registers

on the Intel 8086 and 80286 and low order and high order bytes of the low order words of four

of the registers use the same names as the general purpose registers on the Intel 8086 and

80286)

• Motorola 88100: 32 word (32 bit) general purpose registers; named r0 through r31

SHORT NOTE

An assembly language is a low-level programming language designed for a specific type of

processor. It may be produced by compiling source code from a high-level programming

language (such as C/C++) but can also be written from scratch. Assembly code can be converted to

machine code using an assembler.

ASCII Table and Description

ASCII stands for American Standard Code for Information Interchange. Computers can only

understand numbers, so an ASCII code is the numerical representation of a character such as 'a' or

'@' or an action of some sort. ASCII was developed a long time ago and now the non-printing

characters are rarely used for their original purpose. Below is the ASCII character table and this

includes descriptions of the first 32 non-printing characters. ASCII was actually designed for use

with teletypes and so the descriptions are somewhat obscure. If someone says they want your CV

P a g e | 22

however in ASCII format, all this means is they want 'plain' text with no formatting such as tabs,

bold or underscoring - the raw format that any computer can understand. This is usually so they can

easily import the file into their own applications without issues. Notepad.exe creates ASCII text, or

in MS Word you can save a file as 'text only'

P a g e | 23

P a g e | 24

P a g e | 25

Lecture # 3

Types of Register

P a g e | 26

General purpose Special purpose

Used for more than one used for only one purpose/specific purpose

Purposes.

1. AX Accumulator

2. Bx base AX = 16 Bits

3. CX Count EAX =32 Bits

4. DX destination RAX =64 Bits

X= SIZE

a "bit" is atomic: the smallest unit of storage; A bit stores just a 0 or 1; "In the ... One byte =

collection of 8 bits; e.g. 0 1 0 1 1 0 1 0; One byte can store one ...

, there's a big difference between a bitand a byte. A byte is much bigger — eight times

bigger, to be exact, with eight bitsin every byte. By extension, there are eight megabits in

every megabyte, and one gigabyte is eight times bigger than one gigabit.

Bit. A bit (short for "binary digit") is the smallest unit of measurement used to quantify computer data. It contains a single

binary value of 0 or 1. ... For example, a small text file that is 4 KB in size contains 4,000 bytes, or 32,000 bits

What is the biggest byte size?

• Kilobyte (1024 Bytes)

• Megabyte (1024 Kilobytes)

• Gigabyte (1,024 Megabytes, or 1,048,576 Kilobytes)

• Terabyte (1,024 Gigabytes)

• Petabyte (1,024 Terabytes, or 1,048,576 Gigabytes)

• Exabyte (1,024 Petabytes)

• Zettabyte (1,024 Exabytes)

• Yottabyte (1,204 Zettabytes, or 1,208,925,819,614,629,174,706,176 bytes

P a g e | 27

We divide general purpose registers in two parts

AH(HIGHER)16BIT AL(LOWER)16 BIT

AX=32

X stands for

Register

P a g e | 28

AccumulatorAX: 32BITS

It involves in every operation.

If accumulator is 32 bits, then CPU also will be 32 bits and wise versa.

Accumulators

Accumulator

There is a central register in every processor called the accumulator.

Traditionally all mathematical and logical operations are performed on the

accumulator. The word size of a processor is defined by the width of its

accumulator. A 32bit processor has an accumulator of 32 bits

 Accumulators are registers that can be used for arithmetic, logical, shift, rotate, or other similar

operations. The first computers typically only had one accumulator. Many times there were related

special purpose registers that contained the source data for an accumulator. Accumulators were

replaced with data registers and general purpose registers. Accumulators reappeared in the first

microprocessors.

• Intel 8086/80286: one word (16 bit) accumulator; named AX (high order byte of the AX

register is named AH and low order byte of the AX register is named AL)

• Intel 80386: one doubleword (32 bit) accumulator; named EAX (low order word uses the same

names as the accumulator on the Intel 8086 and 80286 [AX] and low order and high order

P a g e | 29

bytes of the low order words of four of the registers use the same names as the accumulator on

the Intel 8086 and 80286 [AH and AL])

• MIX: one accumulator; named A-register; five bytes plus sign

Base RegisterBX: 16 BITS

Pointer / Index / Base

Function:

Holds the Address of Operands

Base register is used to store starting address of data structure.

Suppose we have an array, and array name represents starting address which is also called Base

address.

base registers

 Base registers or segment registers are used to segment memory. Effective addresses are

computed by adding the contents of the base or segment register to the rest of the effective address

computation. In some processors, any register can serve as a base register. In some processors, there

are specific base or segment registers (one or more) that can only be used for that purpose. In some

processors with multiple base or segment registers, each base or segment register is used for

P a g e | 30

different kinds of memory accesses (such as a segment register for data accesses and a different

segment register for program accesses).

• IBM 360/370: any of the 16 general purpose registers may be used as a base register

• Intel 80x86: 6 dedicated segment registers: CS (code segment), SS (stack segment), DS (data

segment), ES (extra segment, a second data segment register), FS (third data segment register),

and GS (fourth data segment register)

• Motorola 680x0, 68300: any of the 8 address registers may be used as a base register

Counter registerCX: 32 BITS

Counter remembers how many times a loop will run,

Example:

For(int i ;i< 10 i++)

In this example counter register will remember that this loop is going to be run 9 times.

A counter is a special case of a register. Usually, it can only be loaded, stored, or incremented, or

used for the stack or as the program counter. A register can hold data, and it can be used for

temporary storage or, in the case of an accumulator, it can participate in arithmetic or logical

operations.

Destination RegisterDX: 64 BITS

P a g e | 31

In this register we store final output of our operations.

Let’s suppose we are adding two numbers and it gives answer of 38 bits as following:

Num1 + Num2 = 38 bits answer

But our accumulator can save only 32 bits, remaining 6bits will be carried by destination register to

save our data.

The DI (destination Index) register performs the same functions as SI. There is a class of

instructions, called string operations, that use DI to access memory locations addressed by ES.

AGAIN

What are registers in assembly language?

a register is a small bit of memory that sits inside the CPU. and is used byassembly language to

perform various tasks. ... Well, you have general purposeregisters, then you have registers which

have special usage (for example, the program counter registers), and you have various others

(memory/segmentregisters, SSE)

What is ax in assembly language?

AX is the primary accumulator; it is used in input/output and most arithmetic instructions.

For example, in multiplication operation, one operand is stored in EAX or AX or AL register

according to the size of the operand.

P a g e | 32

A register is a part of the processor that can hold a bit pattern. On the MIPS, a register holds 32 bits.

There are many registers in the processor, but only some of them are visible in assembly language.

The others are used by the processor in carrying out its operations.

The type of register that hold data and addresses is called general purposeregister. General

purpose register are used to arithmetic (+,-,*,) and logic (>, <=,) operations. Typically

theses register are 8-32 bit registers.

assemble convert code into binary

FIRST LINE

(CODING)

LAST LINE

IN
 eve

ry assem
b

ly lan
gu

age

p
ro

gram
in

g

P a g e | 33

Nsam converted code into binary

Lecture 4

Programing Overview

Lecture 5

Flag Register

Flag / Program Status Word

Function:

.com file

converted into

binary

P a g e | 34

Collection of different boolean

information each bit has an

independent meaning

Carry Flag:

In eighty, eighty-six architecture, flag registers have 16 bits.

In this case Flag register has 9 bitsand there are also some empty bits.

 بٹس ہیں اس میں نیلے رنگ والی خالی

Overall flag register represents state of microprocessor.

P a g e | 35

It contains bits, and every bit has its own meaning.

POSITIVE=0

NEGATIVE=1

Ye ake Bit

increase ho gai hai

 فلیگ کے دو کام ہی

 ہو جاتی ہے zeroآئے تو اس کی ویلیو کیریاگر تو

 ہو جاتی ہے Oneنہ آئے تو اس کی ویلیو کیریاور اگر

 اور دوسرا کام یہ کرتا ہے

کو اپنے اندر سٹور کر لیتا ہے بیٹاس ایک flagزیادہ ہو جائے تو کیری بیٹجب جواب میں ایک
 اور ڈیٹا ضائع نہیں ہوتا

P a g e | 36

Parity Flag:

Auxiliary Flag:

Is jaga number of 1’s, 4

hainyani even hain to

parity ‘0’ hogi

Is jaga number of 1’s, 5

hain yani odd hain to

parity ‘1’ hogi

Donoki parity value same nahihai ,issiliye

message send hoga k data galataya hi

dobara send karo.

P a g e | 37

It is used very rare,

Group of 4 bits is called nibble. Eg:- 1100

Agar nibble k baad carry a jaye to auxiliary flag ki value One ho jatihai,

Zero Flag:

If we do any operation and it gives a value =‘0’ then zero flag will become 1.

And if it gives a value =‘1’ then zero flag will become 0.

Zero flag ki

value 0 hogi

q k answer

ma 0

nahiaya.

0

Jab nibble k baad carry a jaye to Auxilary flag ki

value 1 ho jatihai.

1 1

Jab last ma carry a jaye to

carry flag ki value 1 ho

jayegi

P a g e | 38

Sign Flag:

If we do any operation and it gives positive value, then sign flag will become 0.

And if it gives negative value, then sign flag will become 1.

Trap Flag:

Trap flag is used to facilitate debuggers.

Further detail will be shown practically.

If we set trap flag at 1 it will execute all line of code one by one.

Interrupt Flag:

It is a signal which is generated by hardware or software

When any problem occurs, this signal is also generated if any software needs a service.

0

P a g e | 39

These signals are generated for CPU.

Jab koi interrupt signal ata hai to CPU uski value check kartahi ,

Agar to value 1 hai to CPU apny wala kaam chor k interrupt wala kaam karna shuru kardayga,

Or agar iski value 0 hai to apna kaam kart arahy ga interrupt signal ko ignore kardayga.

Programmable interrupt controller: kaam esay karta hai k jitney b interrupt atay hain unko receive

karta hai or phir chek karta hi k flag register ki value kia hai,

Agar to value 1 hai to iska matlab CPU free hai to interrupt signals CPU ko processing k liye bhaij

diye jatay hain.

P a g e | 40

Or agar flag register ki value 0 ho iska matlab CPU abhi free nahi hai koi oor kaam kar raha hai issi

liye interrupt signals rok liye jatay hain.

Programmable interrupt controller ye kaam b karta hai k jo sab say zaroori interrupt signal hota hai

usay sab say pehly CPU ko Bhaijta hai.

Direction Flag:

It controls string processing. left to right or right to left

If direction flag is 0 then it will process string from left to right.

And if direction flag is 1 it will process string from right to left.

Overflow Flag:

P a g e | 41

Agar ham kisi numer ko multiply ya add karen or uska answer uski saving capacity say ziada a jaye

to flag register ki value 1 ho jatihai , jo show kartahai k answer over flow ho rahahai .

Agar answer saving capacity k andar andar aye to value 0 ho jatihai.

P a g e | 42

Computer ma virus is tarha ata hai, k jab ham koi USB computer ko lagaty hain to virus chupkay say

IP k andar apni virus wali file ka address rakh deta hai ,

Computer ka kaam to just address file ko execute karna hota hai to wo virus wali file b execute ho

jati hai jis say computer ma virus a jata hai.

Instructions Groups:

source
Destination

Is ma ho ye

rahahai k

bx register

ma jo value

haiusyaxre

gister ma

move

kardo.

19 number ko

ax ma move

kardo

Lda ka

matlabhai

k 89 ko ax

ma move

kardo

Lda 89 ko is

andaz ma b

likha ja

saktahai

mov ax,89

P a g e | 43

Is ma

tarteeb

ka khyal

rakhna

hai

Iskamatlabhai

Ax ma jo value hai usay add kardo 33

k sath or answer wapis ax ma store

kardo,

Those instructions which control

program execution

Cmp matlab compare or

subtract, axki value ko

subtract karo12 ma say

or registers ko

updatekaro.

Eg:-axki value 24 thi, 24 ko 12 say subtract kia to 12

answer aya jo k zeronahihai, issiliye zero flag ki value

0 ho jayegi.

IskamatlabhaiJump Not Equal, mtlab

agar zero flag ki value 0haii to 100

address pay jumpkarjao

P a g e | 44

These special instruction changes the CPU behavior.

Pehly ham nay ax ki value 24 li thi ab ham ax ki value 12

letayhain, jab ax ki 12 value ko subtract kia jayega

bahirwali 12 value k sath to answer 0 aye ga.

Jab answer 0 aye ga to zero flag ki value 1 ho jayegi or zero

flag ki 1 value pay jne100 pay jump nah ikaray ga ,

Q k jne ko 100 pay jump karnay k liye zero flag ki value 0 hona

zaroori hai.

Clear Interrupt

Set Interrupt
When we write Cli, then flag interrupt

becomes0, and when we write

sti, then flag interrupt becomes1.

P a g e | 45

Lecture 6

Program execution

Some informative s.s are following

P a g e | 46

P a g e | 47

P a g e | 48

Our code in .txt file

P a g e | 49

To convert our assembly code in binary language we will write following code in DoxBox

First type cls to clear the screen.

P a g e | 50

Type dir to show all files in assembly folder.

Now convert assembly code file to binary code file using following code:

nasm first.asm -o fir.com

When code has been converted we will write following code to execute our first.asm file. Type:

first.com

how to generate listing file

nasm first.asm -l firstlist.lst

now list has been generated, and we are going to execute this list file.

type firstllist.lst

How to Read list file

P a g e | 51

Take lecture

P a g e | 52

Using Debugger:

In assembly language we use afd(advance full screen debugger)

Debugger only supports .com file

Now type following code to execute your program in debugger format.

afd fir.com

P a g e | 53

F1 and F2 these keys are used to execute program one by one in debugger.

P a g e | 54

P a g e | 55

Lecture 6

Assembly ka matlab hai assembly say number ya upcode ma lay k jana

Diss assembly ka matlab hai number yani upcode say assembly ma lay jana

P a g e | 56

Lecture 9

In old processors linear memory model was used

Iska matlab yai ye

processor ake time

ma 64 bit say ziada

data store nai kar

saktay.

Vise versa

P a g e | 57

But now we use segmented memory model.

Memory Locations

Har memory location

ka koi na koi address

hota hi or total 65536

locations ho gi in 8 bit

processor

P a g e | 58

8088 processor may memory ko

small pieces ma divide kar dia or

har piece ka size 64kb hai

Jisay segment boltay hain, it’s a

small piece of memory with size of

64kb.

These registers

contains starting

addresses

P a g e | 59

Ye different programs run

kiye jo b current running

program hoga uska address

processor ma chala jayega

Segments ma divide karnay ki

waja say ham ake time ma

256kb memory ko asses kar

saktay hain.

P a g e | 60

 in segments k sath fixed registers hotay hain

Stating address say jis

address pay ham nay jana

hota hai in dono starting or

destination address k

difference ko offset boltay

hain.

P a g e | 61

Lecture #10

Hexa decimal ko binary ma Karen to 20bit banti

hain jabky hamara system 16bit hai to

remaining 4bits offset register ma store kar

detay hain .

P a g e | 62

OR= offset register

SR=segment register

Physical address wo

hota hai jo memory k

andar program ka

address hota hai ,

issay programmer nai

dekh sakta

Physical address ko asscess karnay k liye

CPU jo address parts ma divide kar deta hai

wo logical address kehlata hi or

programmer isay dekh sakta hai.

Cpu Segment address k baad zero lagata hai

Or

Offset address say pehlay zero lagata hai.

Segment Registers. Code Seg

ment − It contains all the

instructions to be executed. A

16-

bit CodeSegment register or C

S register stores the starting

address of the code segment.

Data Segment − It contains

data, constants and work areas

P a g e | 63

No we are going to find offset address

Pehlay hexa ko binary ma

convert kia or physical

address nikal k dobara

hexa ma convert kar dia.

Upper 0 tha or neechy 1 tha to next number say ake carry lia jaye ga, or jab

carry lety hain to 2 one yani(1,1) atay hain

Offset address 4 digit ka hota hai issi

liye first wala zero hata dia jaye ga.

=0023H

P a g e | 64

Effective Address or Offset Address: The offset for a memory operand is called the

operand's effective address or EA. It is an unassigned 16 bit number that expresses the operand's

distance in bytes from the beginning of the segment in which it resides. In 8086 we have base

registers and index registers

Lecture 11

Last ma carry a gya jabky 8088 k processor ma just 20 digit store

hotay hain issi liye ye last carry ignore kar dain gay

1+1 =2 hota hai, but answer 0

aye ga or 1 carry jayega, agar

addition kartay 3 aya to 1 ans

aye ga or ake 1 carry ho jayga

P a g e | 65

P a g e | 66

P a g e | 67

Iska matlab hai ax ma 99 dall

do

Iska matlab hai 99 address

pay jo value hai usay ax ma

daldo

Is tareekay say variable ko declare kartay hain,

Dw 10 D=define w=word

P a g e | 68

B= 8bits ka hota hai or bx=16bits or ham 8bits ka data 16bits ma

move karwa rahy hain jo k galat hai,

Ya to bx ko 8bit variable sath replace kia jaye ga ya phir db ko

16bits variable sath replace kia jaye ga ta k dono same bits k hon,

P a g e | 69

Data types or Data sizes:

In Assembly language, there are no distinct data types like char,string,int,float,double,etc Instead

there are very basic data types according to their sizes. They are:

1. byte – 8 bits

2. word – 16 bits

3. dword – 32 bits

4. qword – 64 bits

5. Real4 – 32 bit float

6. Real8 – 64 bit float

7. Real10 – 80 bit float

General purpose registers in 8086 microprocessor

General purpose registers are used to store temporary data within the microprocessor. There are 8

general purpose registers in 8086 microprocessor.

P a g e | 70

Figure – General purpose registers

1. AX – This is the accumulator. It is of 16 bits and is divided into two 8-bit registers AH and AL to

also perform 8-bit instructions.

It is generally used for arithmetical and logical instructions but in 8086 microprocessor it is not

mandatory to have accumulator as the destination operand.

Example:

ADD AX, AX (AX = AX + AX)

2. BX – This is the base register. It is of 16 bits and is divided into two 8-bit registers BH and BL to

also perform 8-bit instructions.

It is used to store the value of the offset.

Example:

MOV BL, [500] (BL = 500H)

P a g e | 71

3. CX – This is the counter register. It is of 16 bits and is divided into two 8-bit registers CH and CL

to also perform 8-bit instructions.

It is used in looping and rotation.

Example:

MOV CX, 0005

LOOP

4. DX – This is the data register. It is of 16 bits and is divided into two 8-bit registers DH and DL to

also perform 8-bit instructions.

It is used in multiplication an input/output port addressing.

Example:

MUL BX (DX, AX = AX * BX)

5. SP – This is the stack pointer. It is of 16 bits.

It points to the topmost item of the stack. If the stack is empty the stack pointer will be (FFFE)H.

It’s offset address relative to stack segment.

6. BP – This is the base pointer. It is of 16 bits.

It is primary used in accessing parameters passed by the stack. It’s offset address relative to stack

segment.

7. SI – This is the source index register. It is of 16 bits.

It is used in the pointer addressing of data and as a source in some string related operations. It’s

offset is relative to data segment.

8. DI – This is the destination index register. It is of 16 bits.

It is used in the pointer addressing of data and as a destination in some string related

operations.It’s offset is relative to extra segment.

P a g e | 72

Computer Architecture and Assembly Language Programming CS401

Lecture No: 1

Address, Data, and Control Buses

A computer system comprises of a processor, memory, and I/O devices. I/O is used for interfacing

with the external

world, while memory is the processor’s internal world. Processor is the core in this picture and is

responsible for

performing operations.

 There must be a mechanism to inform memory that we want to do the read operation

 There must be a mechanism to inform memory that we want to read precisely which element

 There must be a mechanism to transfer that data element from memory to processor

The group of bits that the processor uses to inform the memory about which element to read or write

is collectively known

as the address bus. (address bus generate binary numbers)

Another important bus called the data bus is used to move the data from the memory to the

processor in a read operation

and from the processor to the memory in a write operation.

The third group consists of miscellaneous independent lines used for control purposes. For example,

one line of the bus is

used to inform the memory about whether to do the read operation or the write operation. These lines

are collectively

known as the control bus. (precise synchronization between the processor and the memory is the

responsibility of

P a g e | 73

the control bus. the control

bus is a bidirectional bus and can carry information from processor to memory as well as from

memory to processor.)

The address bus is unidirectional and address always travels from processor to memory.

The number of bits in a cell is called the cell width.

Registers:

Operands are the data on which we want to perform a certain operation.

There are temporary storage places inside the processor called registers.

Registers are like a scratch pad ram inside the processor and their operation is very much like normal

memory cells. They

have precise locations and remember what is placed inside them. They are used when we need more

than one data element

inside the processor at one time. Registers are more than one in number r0, r1, r2

Lecture No: 2

Accumulator

There is a central register in every processor called the accumulator. Traditionally all mathematical

and logical operations

are performed on the accumulator. The word size of a processor is defined by the width of its

accumulator. A 32bit

processor has an accumulator of 32 bits.

Pointer, Index, or Base Register

The name varies from manufacturer to manufacturer, but the basic distinguishing property is that it

does not hold data but

holds the address of data.

Flags Register or Program Status Word

P a g e | 74

This is a special register in every architecture called the flags register or the program status word.

Like the accumulator it

is an 8, 16, or 32 bits register but unlike the accumulator it is meaningless as a unit, rather the

individual bits carry

different meanings.

The bits of the accumulator work in parallel as a unit and each bit mean the same thing. The bits of

the flags register work

independently and individually, and combined its value is meaningless.

Program Counter or Instruction Pointer

Everything must translate into a binary number for our dumb processor to understand it, be it an

operand or an operation

itself. Therefore, the instructions themselves must be translated into numbers. (the symbols are

called instruction

Mnemonic)

For the processor 152 might be the add instruction. Just this one number tells it that it has to add,

where its operands are,

and where to store the result. This number is called the opcode.

INSTRUCTION GROUPS

Usual opcodes in every processor exist for moving data, arithmetic and logical manipulations etc.

However, their

mnemonics vary depending on the will of the manufacturer. Some manufacturers name the

mnemonics for data

movement instructions as “move,” some call it “load” and “store” and still other names are present.

But the basic set of

P a g e | 75

instructions is similar in every processor. A grouping of these instructions makes learning a new

processor quick and easy.

Just the group an instruction belongs tells a lot about the instruction.

Data Movement Instructions

These instructions are used to move data from one place to another. These places can be registers,

memory, or even inside

peripheral devices. Some examples are: mov ax, bx lad 1234

Arithmetic and Logic Instructions

Arithmetic instructions like addition, subtraction, multiplication, division and Logical instructions

like logical and, logical

or, logical xor, or complement are part of this group. Some examples are: and ax, 1234 add bx, 0534

add bx,

[1200]

Program Control Instructions

The instruction pointer points to the next instruction and instructions run one after the other with the

help of this register.

Special Instructions

Another group called special instructions works like the special service commandos. They allow

changing specific

processor behaviors and are used to play with it.

Lecture No: 3

REGISTER ARCHITECTURE

The iAPX88 architecture consists of 14 registers.

General Registers (AX, BX, CX, and DX)

P a g e | 76

The registers AX, BX, CX, and DX behave as general purpose registers in Intel architecture and do

some specific

functions in addition to it. X in their names stand for extended meaning 16bit registers. For example,

AX means we are

referring to the extended 16bit “A” register. Its upper and lower byte are separately accessible as AH

(A high byte) and

AL (A low byte). All general purpose registers can be accessed as one 16bit register or as two 8bit

registers. Any change

in AH or AL is reflected in AX as well. The A of AX stands for Accumulator. The B of BX stands

for Base because of its

role in memory addressing The C of CX stands for Counter

as there are certain instructions that work with an automatic count in the CX register. The D of DX

stands for Destination

as it acts as the destination in I/O operations.

Index Registers (SI and DI)

SI and DI stand for source index and destination index respectively. These are the index registers of

the Intel architecture

which hold address of data and used in memory access. SI and DI are 16bit and cannot be used as

8bit register pairs like

AX, BX, CX, and DX.

Instruction Pointer (IP)

This is the special register containing the address of the next instruction to be executed. No

mathematics or memory

access can be done through this register. It is out of our direct control and is automatically used.

Stack Pointer (SP)

P a g e | 77

It is a memory pointer and is used indirectly by a set of instructions. This register will be explored in

the discussion of the

system stack.

Base Pointer (BP)

It is also a memory pointer containing the address in a special area of memory called the stack and

will be explored

alongside SP in the discussion of the stack.

Flags Register

The flags register is not meaningful as a unit rather it is bit wise significant and accordingly each bit

is named separately.

The Intel FLAGS register has its bits organized as follows:

15 14 13 12 11 10 9 8 7 6 5 3 2 1 0

O D I T S Z A P C

Overflow Flag - Direction Flag - Interrupt Flag - Trap Flag - Sign Flag - Zero Flag - Auxiliary Carry

-Parity –

Carry

Segment Registers (CS, DS, SS, and ES)

The code segment register, data segment register, stack segment register, and the extra segment

register are special

registers related to the Intel segmented memory model.

the Intel way of writing things is: operation destination, source - operation destination -

operation source – operation

Lecture No: 4

SEGMENTED MEMORY MODEL

Rationale

P a g e | 78

In earlier processors like 8080 and 8085 the linear memory model was used to access memory. In

linear memory model

the whole memory appears like a single array of data. 8080 and 8085 could access a total memory of

64K using the 16

lines of their address bus. When designing iAPX88 the Intel designers wanted to remain compatible

with 8080 and 8085

however 64K was too small to continue with, for their new processor. To get the best of both worlds

they introduced the

segmented memory model in 8088.

Mechanism

The segmented memory model allows multiple functional windows into the main memory, a code

window, a data window

etc. The processor sees code from the code window and data from the data window. The size of one

window is restricted

to 64K. 8085 software fits in just one such window. It sees code, data, and stack from this one

window, so downward

compatibility is attained.

CS holds the zero or the base of code. DS holds the zero of data. Or we can say CS tells how high

code from

the floor is, and DS tells how high data from the floor is, while SS tells how high the stack is. One

extra segment ES can

be used if we need to access two distant areas of memory at the same time that both cannot be seen

through the same

window. ES also has special role in string instructions. ES is used as an extra data segment and

cannot be used as an extra

P a g e | 79

code or stack segment.

The IP register cannot work alone. It needs the CS register to open a 64K window in the 1MB

memory

If the window is moved i.e. the CS register is changed, IP will change its behavior accordingly and

start selecting from the

new window.

Physical Address Calculation

Now for the whole megabyte we need 20 bits while CS and IP are both 16bit registers. We need a

mechanism to make a

20bit number out of the two 16bit numbers. Consider that the segment value is stored as a 20 bit

number with the lower

four bits zero and the offset value is stored as another 20 bit number with the upper four bits zeroed.

The two are added to

produce a 20bit absolute address.

Paragraph Boundaries

As the segment value is a 16bit number and four zero bits are appended to the right to make it a

20bit number, segments

can only be defined a 16byte boundaries called paragraph boundaries. The first possible segment

value is 0000 meaning a

physical base of 00000 and the next possible value of 0001 means a segment base of 00010 or 16 in

decimal. Therefore

segments can only be defined at 16 byte boundaries.

Overlapping Segments

We can also observe that in the case of our program CS, DS, SS, and ES all had the same value in

them. This is called

P a g e | 80

overlapping segments so that we can see the same memory from any window. This is the structure of

a COM file. The

segment, offset pair is called a logical address, while the 20bit address is a physical address which is

the real thing.

Logical addressing is a mechanism to access the physical memory. As we have seen three different

logical addresses

accessed the same physical address.

Lecture No: 5

DATA DECLARATION

The first instruction of our first assembly language program was “mov ax, 5.” Here MOV was the

opcode; AX was the

destination operand, while 5 was the source operand. The value of 5 in this case was stored as part of

the instruction

encoding. In the opcode B80500, B8 was the opcode and 0500 was the operand stored immediately

afterwards. Such an

operand is called an immediate operand. It is one of the many types of operands available.

To declare a part of our program as holding data instead of instructions we need a couple of very

basic but special

assembler directives. The first directive is “define byte” written as “db.” db somevalue

The other directive is “define word” or “dw” with the same syntax as “db” but reserving a whole

word of 16 bits instead

of a byte.

There are directives to declare a double or a quad word as well but we will restrict ourselves to byte

and word declarations

for now. For single byte we use db and for two bytes we use dw.

P a g e | 81

a symbol associated to a point in the program is called a label and is written as the label name

followed by a colon.

Lecture No: 6

SIZE MISMATCH ERRORS

If we change the directive in the last example from DW to DB, the program will still assemble and

debug without errors,

however the results will not be the same as expected. To keep the declarations and their access

synchronized is the

responsibility of the programmer and not the assembler. The assembler allows the programmer to do

everything he wants

to do, and that can possibly run on the processor. The assembler only keeps us from writing illegal

instructions which the

processor cannot execute. This is the difference between a syntax error and a logic error.

the processor knew the size of the data movement

operation from the size of the register involved, for example in “mov ax, [num1]” memory can be

accessed as byte or as

word, it has no hard and fast size, but the AX register tells that this operation has to be a word

operation. Similarly in

“mov al, [num1]” the AL register tells that this operation has to be a byte operation. However in

“mov ax, bl” the AX

register tells that the operation has to be a word operation while BL tells that this has to be a byte

operation. The

assembler will declare that this is an illegal instruction.

The instruction “mov [num1], [num2]” is illegal as previously discussed not because of data

movement size but because

P a g e | 82

memory to memory moves are not allowed at all. The instruction “mov [num1], 5” is legal but there

is no way for the

processor to know the data movement size in this operation. The variable num1 can be treated as a

byte or as a word. Such

instructions are declared ambiguous by the assembler. Therefore to resolve its ambiguity we clearly

tell our intent to the

assembler in one of the following ways.

mov byte [num1], 5

mov word [num1], 5

REGISTER INDIRECT ADDRESSING

We have done very elementary data access till now. Assume that the numbers we had were 100 and

not just three. This

way of adding them will cost us 200 instructions. There must be some method to do a task

repeatedly on data placed in

consecutive memory cells. The key to this is the need for some register that can hold the address of

data.

There are four registers in iAPX88 architecture that can hold address of data and they are BX, BP,

SI, and DI.

Labels can be used on code as well. Just like data labels they remember the address at which they are

used. The

assembler does not differentiate between code labels and data labels. The programmer is responsible

for using a data label

as data and a code label as code. The label l1 in this case is the address of the following instruction.

JNZ stands for “jump if not zero.” NZ is the condition in this instruction. So the instruction is read as

“jump to the

P a g e | 83

location l1 if the zero flag is not set.” And revisiting the zero flag definition “the zero flag is set if

the last mathematical or

logical operation has produced a zero in its destination.”

a register is used to reference memory so this form of access is called register indirect memory

access. We used

the BX register for it and the B in BX and BP stands for base therefore we call register indirect

memory access using BX

or BP, “based addressing.” Similarly, when SI or DI is used we name the method “indexed

addressing.” They have the

same functionality, with minor differences because of which the two are called base and index.

Lecture No: 7

REGISTER + OFFSET ADDRESSING

Direct addressing and indirect addressing using a single register are two basic forms of memory

access. Another

possibility is to use different combinations of direct and indirect references.

This form of access is of the register indirect family and is called base + offset or index + offset

depending on

whether BX or BP is used or SI or DI is used.

SEGMENT ASSOCIATION: All the addressing mechanisms in iAPX88 return a number called

effective address. For

example in base + offset addressing, neither the base nor the offset alone tells the desired cell in

memory to be accessed. It

is only after the addition is done that the processor knows which cell to be accessed. This number

which came as the result

P a g e | 84

of addition is called the effective address. But the effective address is just an offset and is

meaningless without a segment.

Only after the segment is known, we can form the physical address that is needed to access a

memory cell.

Segmentation is there and it’s all happening relative to a segment base. We saw DS, CS, SS, and ES

inside the

debugger.

CS is associated to IP by default; rather it is tied with it. It cannot access memory in any other

segment.

In case of data, there is a bit relaxation and nothing is tied. Rather there is a default association

which can be overridden.

In the case of register indirect memory access, if the register used is one of SI, DI, or BX the default

segment is DS. If

however the register used is BP the default segment used is SS. The stack segment has a very critical

and fine use and

there is a reason why BP is attached to SS by default. IP is tied to CS while SP is tied to SS. The

association of these

registers cannot be changed; they are locked with no option. Others are not locked and can be

changed.

To override the association for one instruction of one of the registers BX, BP, SI or DI, we use the

segment

override prefix. For example “mov ax, [cs:bx]” associates BX with CS for this one instruction. For

the next instruction the

default association will come back to act. The processor places a special byte before the instruction

called a prefix.

P a g e | 85

The important thing to note is that CS, DS, SS, and ES all had the same value. The value itself is not

important

but the fact that all had the same value is important. All four segment windows exactly overlap.

Whatever segment

register we use the same physical memory will be accessed.

ADDRESS WRAPAROUND: There are two types of wraparounds. One is within a single segment

and the other is

inside the whole physical memory. Segment wraparound occurs when during the effective address

calculation a carry is

generated. This carry is dropped giving the effect that when we try to access beyond the segment

limit, we are actually

wrapped around to the first cell in the segment. For example if BX=9100, DS=1500 and the access is

[bx+0x7000] we

form the effective address 9100 + 7000 = 10100.

The same can also happen at the time of physical address calculation. For example BX=0100,

DS=FFF0 and the

access under consideration is [bx+0x0100]. The effective address will be 0200 and the physical

address will be 100100.

This is a 21bit answer and cannot be sent on the address bus which is 20 bits wide. The carry is

dropped and just like the

segment wraparound our physical memory has wrapped around at its very top. When we tried to

access beyond limits the

actual access is made at the very start. This second wraparound is a bit different in newer processor

with more address

lines but that will be explained in later chapters.

P a g e | 86

ADDRESSING MODES SUMMARY: The iAPX88 processor supports seven modes of memory

access. Remember that

immediate is not an addressing mode but an operand type. Operands can be immediate, register, or

memory. If the

operand is memory one of the seven addressing modes will be used to access it. The memory access

mechanisms can also

be written in the general form “base + index + offset”

Direct: A fixed offset is given in brackets and the memory at that offset is accessed. For example

“mov [1234], ax” stores

the contents of the AX registers in two bytes starting at address 1234 in the current data segment.

The instruction “mov

[1234], al” stores the contents of the AL register in the byte at offset 1234.

Based Register Indirect: A base register is used in brackets and the actual address accessed

depends on the value

contained in that register. For example “mov [bx], ax” moves the two byte contents of the AX

register to the address

contained in the BX register in the current data segment. The instruction “mov [bp], al” moves the

one byte content of the

AL register to the address contained in the BP register in the current stack segment.

Indexed Register Indirect: An index register is used in brackets and the actual address accessed

depends on the value

contained in that register. For example “mov [si], ax” moves the contents of the AX register to the

word starting at address

contained in SI in the current data segment. The instruction “mov [di], ax” moves the word

contained in AX to the offset

P a g e | 87

stored in DI in the current data segment.

Based Register Indirect + Offset: A base register is used with a constant offset in this addressing

mode. The value

contained in the base register is added with the constant offset to get the effective address. For

example “mov [bx+300],

ax” stores the word contained in AX at the offset attained by adding 300 to BX in the current data

segment. The

instruction “mov [bp+300], ax” stores the word in AX to the offset attained by adding 300 to BP in

the current stack

segment.

Indexed Register Indirect + Offset: An index register is used with a constant offset in this

addressing mode. nThe value

contained in the index register is added with the constant offset to get the effective address. For

example “mov [si+300],

ax” moves the word contained in AX to the offset attained by adding 300 to SI in the current data

segment and the

instruction “mov [di+300], al” moves the byte contained in AL to the offset attained by adding 300

to DI in the current

data segment.

Base + Index: One base and one index register is used in this addressing mode. The value of the

base register and the

index register are added together to get the effective address. For example “mov [bx+si], ax” moves

the word contained in

the AX register to offset attained by adding BX and SI in the current data segment. The instruction

“mov [bp+di], al”

P a g e | 88

moves the byte contained in AL to the offset attained by adding BP and DI in the current stack

segment. Observe that the

default segment is based on the base register and not on the index register.

Base + Index + Offset: This is the most complex addressing method and is relatively infrequently

used. A base register,

an index register, and a constant offset are all used in this addressing mode. The values of the base

register, the index

register, and the constant offset are all added together to get the effective address. For example “mov

[bx+si+300], ax”

moves the word contents of the AX register to the word in memory starting at offset attained by

adding BX, SI, and 300 in

the current data segment. Default segment association is again based on the base register. It might be

used with the array

base of a two dimensional array as the constant offset, one dimension in the base register and the

other in the index

register. This way all calculation of location of the desired element has been delegated to the

processor.

Lecture No: 8

COMPARISON AND CONDITIONS: Conditional jump was introduced in the last chapter to loop

for the addition of a

fixed number of array elements. The jump was based on the zero flag. There are many other

conditions possible in a

program. For example an operand can be greater than another operand or it can be smaller. We use

comparisons and

P a g e | 89

boolean expressions extensively in higher level languages. They must be available is some form in

assembly language,

otherwise they could not possibly be made available in a higher level language. In fact they are

available in a very fine

and purified form. The basic root instruction for all comparisons is CMP standing for compare. The

operation of CMP is

to subtract the source operand from the destination operand, updating the flags without changing

either the source or the

destination. CMP is one of the key instructions as it introduces the capability of conditional routing

in the processor.

A closer thought reveals that with subtraction we can check many different conditions. For example

if a larger

number is subtracted from a smaller number then borrow is needed. The carry flag plays the role of

borrow during the

subtraction operation. And in this condition the carry flag will be set. If two equal numbers are

subtracted the answer is

zero and the zero flag will be set. Every significant relation between the destination and source is

evident from the sign

flag, carry flag, zero flag, and the overflow flag. CMP is meaningless without a conditional jump

immediately following

it. Another important distinction at this point is the difference between signed and unsigned

numbers. In unsigned

numbers only the magnitude of the number is important, whereas in signed numbers both the

magnitude and the sign are

P a g e | 90

important. For example -2 is greater than -3 but 2 is smaller than 3. The sign has affected our

comparisons.

However for signed numbers JG and JL will work properly and for unsigned JA and JB will work

properly and

not the other way around.

CONDITIONAL JUMPS: For every interesting or meaningful situation of flags, a conditional

jump is there. For

example JZ and JNZ check the zero flag. If in a comparison both operands are same, the result of

subtraction will be zero

and the zero flag will be set. Thus JZ and JNZ can be used to test equality. That is why there are

renamed versions JE and

JNE read as jump if equal or jump if not equal. They seem more logical in writing but mean exactly

the same thing with

the same opcode. Many jumps are renamed with two or three names for the same jump, so that the

appropriate logic can

be conveyed in assembly language programs. This renaming is done by Intel and is a standard for

iAPX88. JC and JNC

test the carry flag. For example we may need to test whether there was an overflow in the last

unsigned addition or

subtraction. Carry flag will also be set if two unsigned numbers are subtracted and the first is smaller

than the second.

Therefore the renamed versions JB, JNAE, and JNB, JAE are there standing for jump if below, jump

if not above or

equal, jump if not below, and jump if above or equal respectively. The operation of all jumps can be

seen from the

P a g e | 91

following table.

The CMP instruction sets the flags reflecting the relation of the destination to the source. This is

important as

when we say jump if above, then what is above what. The destination is above the source or the

source is above the

destination. The JA and JB instructions are related to unsigned numbers. That is our interpretation

for the destination and

source operands is unsigned. The 16th bit holds data and not the sign. In the JL and JG instructions

standing for jump if

lower and jump if greater respectively, the interpretation is signed. The 16th bit holds the sign and

not the data. The

difference between them will be made clear as an elaborate example will be given to explain the

difference. One jump is

special that it is not dependant on any flag. It is JCXZ, jump if the CX register is zero. This is

because of the special

treatment of the CX register as a counter. This jump is regardless of the zero flag. There is no

counterpart or not form of

this instruction.

Lecture No: 9

UNCONDITIONAL JUMP: Till now we have been placing data at the end of code. There is no

such restriction and we

can define data anywhere in the code. Taking the previous example, if we place data at the start of

code instead of at the

end and we load our program in the debugger. We can see our data placed at the start but the

debugger is intending to start

P a g e | 92

execution at our data. The COM file definition said that the first executable instruction is at offset

0100 but we have

placed data there instead of code. So the debugger will try to interpret that data as code and showed

whatever it could

make up out of those opcodes. We introduce a new instruction called JMP. It is the unconditional

jump that executes

regardless of the state of all flags. So we write an unconditional jump as the very first instruction of

our program and jump

to the next instruction that follows our data declarations. This time 0100 contains a valid first

instruction of our program.

RELATIVE ADDRESSING: Inside the debugger the instruction is shown as JMP 0119 and the

location 0119 contains

the original first instruction of the logic of our program. This jump is unconditional, it will always be

taken. Now looking

at the opcode we see F21600 where F2 is the opcode and 1600 is the operand to it. 1600 is 0016 in

proper word order.

0119 is not given as a parameter rather 0016 isgiven.

This is position relative addressing in contrast to absolute addressing. It is not telling the exact

address rather it is

telling how much forward or backward to go from the current position of IP in the current code

segment. So the

instruction means to add 0016 to the IP register. At the time of execution of the first instruction at

0100 IP was pointing to

the next instruction at 0103, so after adding 16 it became 0119, the desired target location. The

mechanism is important to

P a g e | 93

know, however all calculations in this mechanism are done by the assembler and by the processor.

We just use a label

with the JMP instruction and are ensured that the instruction at the target label will be the one to be

executed.

TYPES OF JUMP: The three types of jump, near, short, and far, differ in the size of instruction and

the range of memory

they can jump to with the smallest short form of two bytes and a range of just 256 bytes to the far

form of five bytes and a

range covering the whole memory.

Near Jump: When the relative address stored with the instruction is in 16 bits as in the last example

the jump is called a

near jump. Using a near jump we can jump the lower part. A negative number actually is a large

number and works this

way using the wraparound behavior.

Short Jump: If the offset is stored in a single byte as in 75F2 with the opcode 75 and operand F2,

the jump is called a

short jump. F2 is added to IP as a signed byte. If the byte is negative the complement is negated from

IP otherwise the

byte is added. Unconditional jumps can be short, near, and far. The far type is yet to be discussed.

Conditional jumps can

only be short. A short jump can go +127 bytes ahead in code and -128 bytes backwards and no more.

This is the limitation

of a byte in singed representation.

Far Jump: Far jump is not position relative but is absolute. Both segment and offset must be given

to a far jump. The

P a g e | 94

previous two jumps were used to jump within a segment. Sometimes we may need to go from one

code segment to

another, and near and short jumps cannot take us there. Far jump must be used and a two byte

segment and a two byte

offset are given to it. It loads CS with the segment part and IP with the offset part. Execution

therefore resumes from that

location in physical memory. The three instructions that have a far form are JMP, CALL, and RET,

are related to program

control. Far capability makes intra segment control possible.

Lecture No: 10

Inside the debugger we observe that the JBE is changed to JNA due to the same reason as discussed

for JNE and

JNZ. The passes change the data in the same manner as we presented in our illustration above. If

JBE in the code is

changed to JAE the sort will change from ascending to descending. For signed numbers we can use

JLE and JGE

respectively for ascending and descending sort.

To clarify the difference of signed and unsigned jumps we change the data array in the last program

to include

some negative numbers as well. When JBE will be used on this data, i.e. with unsigned interpretation

of the data and an

ascending sort, the negative numbers will come at the end after the largest positive number.

However JLE will bring the

negative numbers at the very start of the list to bring them in proper ascending order according to a

signed interpretation,

P a g e | 95

even though they are large in magnitude.

The JBE instruction will treat this data as an unsigned number and will cater only for the magnitude

ignoring the

sign. If the program is loaded in the debugger, the numbers will appear in their hexadecimal

equivalent.

MULTIPLICATION ALGORITHM: With the important capability of decision making in our

repertoire we move on to

the discussion of an algorithm, which will help us uncover an important set of instructions in our

processor used for bit

manipulations.

Multiplication is a common process that we use, and we were trained to do in early schooling.

Remember multiplying by

a digit and then putting a cross and then multiplying with the next digit and putting two crosses and

so on and summing

the intermediate results in the end. Very familiar process but we never saw the process as an

algorithm, and we need to

see it as an algorithm to convey it to the processor.

SHIFTING AND ROTATIONS: The set of shifting and rotation instructions is one of the most

useful set in any

processor’s instruction set. They simplify really complex tasks to a very neat and concise algorithm.

The following

shifting and rotation operations are available in our processor.

Shift Logical Right (SHR): The shift logical right operation inserts a zero from the left and moves

every bit one position

to the right and copies the rightmost bit in the carry flag.

P a g e | 96

Shift Logical Left (SHL) / Shift Arithmetic Left (SAL): The shift logical left operation is the

exact opposite of shift

logical right. In this operation the zero bit is inserted from the right and every bit moves one position

to its left with the

most significant bit dropping into the carry flag. Shift arithmetic left is just another name for shift

logical left.

Shift Arithmetic Right (SAR): A signed number holds the sign in its most significant bit. If this bit

was one a logical

right shifting will change the sign of this number because of insertion of a zero from the left. The

sign of a signed number

should not change because of shifting. The operation of shift arithmetic right is therefore to shift

every bit one place to the

right with a copy of the most significant bit left at the most significant place. The bit dropped from

the right is caught in

the carry basket. The sign bit is retained in this operation.

Rotate Right (ROR): In the rotate right operation every bit moves one position to the right and the

bit dropped from the

right is inserted at the left. This bit is also copied into the carry flag. The operation can be

understood by imagining that

the pipe used for shifting.

Rotate Left (ROL): In the operation of rotate left instruction, the most significant bit is copied to

the carry flag and is

inserted from the right, causing every bit to move one position to the left. It is the reverse of the

rotate right instruction.

Rotation can be of eight or sixteen bits.

P a g e | 97

Rotate Through Carry Right (RCR): In the rotate through carry right instruction, the carry flag is

inserted from the left,

every bit moves one position to the right, and the right most bit is dropped in the carry flag.

Effectively this is a nine bit or

a seventeen bit rotation instead of the eight or sixteen bit rotation as in the case of simple rotations.

Imagine

Rotate Through Carry Left (RCL): The exact opposite of rotate through carry right instruction is

the rotate through

carry left instruction. In its operation the carry flag is inserted from the right causing every bit to

move one location to its

left and the most significant bit occupying the carry flag.

Lecture No: 11

MULTIPLICATION IN ASSEMBLY LANGUAGE: The multiplication with the new algorithm

We try to identify steps of our algorithm. First we set the result to zero. Then we check the right

most bit of multiplier. If

it is one add the multiplicand to the result, and if it is zero perform no addition. Left shift the

multiplicand before the next

bit of multiplier is tested. The left shifting of the multiplicand is performed regardless of the value of

the multiplier’s right

most bit. Just like the crosses in traditional multiplication are always placed to mark the ones, tens,

thousands, etc. places.

Then check the next bit and if it is one add the shifted value of the multiplicand to the result. Repeat

for as many digits as

there are in the multiplier, 4 in our example. Formulating the steps of the algorithm we get:

• Shift the multiplier to the right.

P a g e | 98

• If CF=1 add the multiplicand to the result.

• Shift the multiplicand to the left.

EXTENDED OPERATIONS: We performed a 4bit multiplication to explain the algorithm

however the real advantage

of the computer is when we ask it to multiply large numbers, Numbers whose multiplication takes

real time. If we have an

8bit number we can do the multiplication in word registers, but are we limited to word operations?

What if we want to

multiply 32bit or even larger numbers? We are certainly not limited. Assembly language only

provides us the basic

building blocks. We build a plaza out of these blocks, or a building, or a classic piece of architecture

is only dependent

upon our imagination. With our logic we can extend these algorithms as much as we want. Our next

example will be

multiplication of 16bit numbers to produce a 32bit answer. However for a 32bit answer we need a

way to shift a 32bit

number and a way to add 32bit numbers. We cannot depend on 16bit shifting as we have 16

significant bits in our

multiplicand and shifting any bit towards the left may drop a valuable bit causing a totally wrong

result. A valuable bit

means any bit that is one. Dropping a zero bit doesn’t cause any difference. So we place the 16it

number in 32bit space

with the upper 16 bits zeroed so that the sixteen shift operations don’t cause any valuable bit to drop.

Even though the

numbers were 16bit we need 32bit operations to multiply correctly.

P a g e | 99

Extended Shifting: Using our basic shifting and rotation instructions we can effectively shift a 32bit

number in memory

word by word. We cannot shift the whole number at once since our architecture is limited to word

operations. The

algorithm we use consists of just two instructions and we name it extended shifting.

num1: dd 40000

shl word [num1], 1

rcl word [num1+2], 1

The DD directive reserves a 32bit space in memory, however the value we placed there will fit in

16bits. So we can safely

shift the number left 16 times. The least significant word is accessible at num1 and the most

significant word is accessible

at num1+2.

Extended Addition and Subtraction: We also needed 32bit addition for multiplication of 16bit

numbers. The idea of

extension is same here. However we need to introduce a new instruction at this place. The

instruction is ADC or “add with

carry.” Normal addition has two operands and the second operand is added to the first operand.

However ADC has three

operands. The third implied operand is the carry flag. The ADC instruction is specifically placed for

extending the

capability of ADD. Numbers of any size can be added using a proper combination of ADD and

ADC. All basic building

blocks are provided for the assembly language programmer, and the programmer can extend its

capabilities as much as

P a g e | 100

needed by using these fine instructions in appropriate combinations.

Further clarifying the operation of ADC, consider an instruction “ADC AX, BX.” Normal addition

would have just added

BX to AX, however ADC first adds the carry flag to AX and then adds BX to AX. Therefore the last

carry is also

included in the result.

The algorithm should be apparent by now. The lower halves of the two numbers to be added are first

added with a normal

addition. For the upper halves a normal addition would lose track of a possible carry from the lower

halves and the answer

would be wrong. If a carry was generated it should go to the upper half. Therefore the upper halves

are added with an

addition with carry instruction.

dest: dd 40000

src: dd 80000

mov ax, [src]

add word [dest], ax

mov ax, [src+2]

adc word [dest+2], ax

For subtraction the same logic will be used and just like addition with carry there is an instruction

to subtract

with borrows called SBB. Borrow in the name means the carry flag and is used just for clarity. Or

we can say that the

carry flag holds the carry for addition instructions and the borrow for subtraction instructions. Also

the carry is generated

P a g e | 101

at the 17th bit and the borrow is also taken from the 17th bit. Also there is no single instruction that

needs borrow and

carry in their independent meanings at the same time. Therefore it is logical to use the same flag for

both tasks. We extend

subtraction with a very similar algorithm. The lower halves must be subtracted normally while the

upper halves must be

subtracted with a subtract with borrow instruction so that if the lower halves needed a borrow, a one

is subtracted from the

upper halves. The algorithm is as under.

dest: dd 40000

src: dd 80000

mov ax, [src]

sub word [dest], ax

mov ax, [src+2]

sbb word [dest+2], ax

Extended Multiplication: We use extended shifting and extended addition to formulate our

algorithm to do extended

multiplication. The multiplier is still stored in 16bits since we only need to check its bits one by one.

The multiplicand

however cannot be stored in 16bits otherwise on left shifting its significant bits might get lost.

Therefore it has to be

stored in 32bits and the shifting and addition used to accumulate the result must be 32bits as well.

Lecture No: 12

BITWISE LOGICAL OPERATIONS: The 8088 processor provides us with a few logical

operations that operate at the

P a g e | 102

bit level. The logical operations are the same as discussed in computer logic design; however our

perspective will be a

little different. The four basic operations are AND, OR, XOR, and NOT. The important thing about

these operations is

that they are bitwise. This means that if “and ax, bx” instruction is given, then the operation of AND

is applied on

corresponding bits of AX and BX. There are 16 AND operations as a result; one for every bit of AX.

Bit 0 of AX will be

set if both its original value and Bit 0 of BX are set, bit 1 will be set if both its original value and Bit

1 of BX are set, and

so on for the remaining bits. These operations are conducted in parallel on the sixteen bits. Similarly

the operations of

other logical operations are bitwise as well.

AND operation: AND performs the logical bitwise and of the two operands (byte or word) and

returns the result to the

destination operand. A bit in the result is set if both corresponding bits of the original operands are

set; otherwise the bit is

cleared as shown in the truth table. Examples are “and ax, bx” and “and byte [mem], 5.” All

possibilities that are legal for

addition are also legal for the AND operation. The different thing is the bitwise behavior of this

operation.

OR operation: OR performs the logical bitwise “inclusive or” of the two operands (byte or word)

and returns the result to

the destination operand. A bit in the result is set if either or both corresponding bits in the original

operands are set

P a g e | 103

otherwise the result bit is cleared as shown in the truth table. Examples are “or ax, bx” and “or byte

[mem], 5.”

XOR operation: XOR (Exclusive Or) performs the logical bitwise “exclusive or” of the two

operands and returns the

result to the destination operand. A bit in the result is set if the corresponding bits of the original

operands contain

opposite values (one is set, the other is cleared) otherwise the result bit is cleared as shown in the

truth table. XOR is a

very important operation due to the property that it is a reversible operation. It is used in many

cryptography algorithms,

image processing, and in drawing operations. Examples are “xor ax, bx” and “xor byte [mem], 5.”

NOT operation: NOT inverts the bits (forms the one’s complement) of the byte or word operand.

Unlike the other logical

operations, this is a single operand instruction, and is not purely a logical operation in the sense the

others are, but it is still

traditionally counted in the same set. Examples are “not ax” and “not byte [mem]”.

MASKING OPERATIONS

Selective Bit Clearing: Another use of AND is to make selective bits zero in its destination

operand. The source operand

is loaded with a mask containing one at positions which are retain their old value and zero at

positions which are to be

zeroed. The effect of applying this operation on the destination with mask in the source is to clear

the desired bits. This

operation is called masking. For example if the lower nibble is to be cleared then the operation can

be applied with F0 in

P a g e | 104

the source. The upper nibble will retain its old value and the lower nibble will be cleared.

Selective Bit Setting: The OR operation can be used as a masking operation to set selective bits.

The bits in the mask are

cleared at positions which are to retain their values, and are set at positions which are to be set. For

example to set the

lower nibble of the destination operand, the operation should be applied with a mask of 0F in the

source. The upper nibble

will retain its value and the lower nibble will be set as a result.

Selective Bit Inversion: XOR can also be used as a masking operation to invert selective bits. The

bits in the mask are

cleared at positions, which are to retain their values, and are set at positions, which are to be

inverted. For example to

invert the lower nibble of the destination operand, the operand should be applied with a mask of 0F

in the source. The

upper nibble will retain its value and the lower nibble will be set as a result. Compare this with NOT

which inverts

everything. XOR on the other hand allows inverting selective bits.

Selective Bit Testing: AND can be used to check whether particular bits of a number are set or not.

Previously we used

shifting and JC to test bits one by one. Now we introduce another way to test bits, which is more

powerful in the sense

that any bit can be tested anytime and not necessarily in order. AND can be applied on a destination

with a 1-bit in the

desired position and a source, which is to be checked. If the destination is zero as a result, which can

be checked with a JZ

P a g e | 105

instruction, the bit at the desired position in the source was clear.

However the AND operation destroys the destination mask, which might be needed later as well.

Therefore Intel

provided us with another instruction analogous to CMP, which is non-destructive subtraction. This is

the TEST instruction

and is a non-destructive AND operation. It doesn’t change the destination and only sets the flags

according to the AND

operation. By checking the flags, we can see if the desired bit was set or cleared. We change our

multiplication algorithm

to use selective bit testing instead of checking bits one by one using the shifting operations.

Lecture No: 13

PROGRAM FLOW: Instruction are tied to one another forming an execution thread, just like a

knitted thread where

pieces of cotton of different sizes are twisted together to form a thread. This thread of execution is

our program. The jump

instruction breaks this thread permanently, making a permanent diversion, like a turn on a highway.

The conditional jump

selects one of the two possible directions, like right or left turn on a road. So there is no concept of

returning. However

there are roundabouts on roads as well that take us back from where we started after having traveled

on the boundary of

the round. This is the concept of a temporary diversion. Two or more permanent diversions can take

us back from where

we started, just like two or more road turns can take us back to the starting point, but they are still

permanent diversions in

P a g e | 106

their nature. We need some way to implement the concept of temporary diversion in assembly

language. We want to

create a roundabout of bubble sort, another roundabout of our multiplication algorithm, so that we

can enter into the

roundabout whenever we need it and return back to wherever we left from after completing the

round.

Key point in the above discussion is returning to where we left from, like a loop in a knitted thread.

Diversion

should be temporary and not permanent. The code of bubble sort written at one place, multiply at

another, and we

temporarily divert to that place, thus avoiding a repetition of code at a 100 places.

CALL and RET: In every processor, instructions are available to divert temporarily and to divert

permanently. The

instructions for permanent diversion in 8088 are the jump instructions, while the instruction for

temporary diversion is the

CALL instruction. The word call must be familiar to the readers from subroutine call in higher level

languages. The

CALL instruction allows temporary diversion and therefore reusability of code. Now we can place

the code for bubble

sort at one place and reuse it again and again. This was not possible with permanent diversion.

Actually the 8088

permanent diversion mechanism can be tricked to achieve temporary diversion. However it is not

possible without getting

into a lot of trouble. The key idea in doing it this way is to use the jump instruction form that takes a

register as argument.

P a g e | 107

Therefore this is not impossible but this is not the way it is done.

The natural way to do this is to use the CALL instruction followed by a label, just like JMP is

followed by a label.

Execution will divert to the code following the label. Till now the operation has been similar to the

JMP instruction. When

the subroutine completes we need to return. The RET instruction is used for this purpose. The word

return holds in its

meaning that we are to return from where we came and need no explicit destination. Therefore RET

takes no arguments

and transfers control back to the instruction following the CALL that took us in this subroutine. The

actual technical

process that informs RET where to return will be discussed later after we have discussed the system

stack.

Parameters

We intend to write the bubble sort code at one place and CALL it whenever needed. An immediately

visible problem is

that whenever we call this subroutine it will sort the same array in the same order. However in a real

application we will

need to sort various arrays of various sizes. We might sometimes need an ascending sort and

descending at other times.

Similarly our data may be signed or unsigned. Such pieces of information that may change from

invocation to invocation

and should be passed from the caller to the subroutine are called parameters. There must be some

way of passing these

P a g e | 108

parameters to the subroutine. Revising the subroutine temporary flow breakage mechanism, the most

straight forward way

is to use registers. The CALL mechanism breaks the thread of execution and does not change

registers, except IP which

must change for processor to start executing at another place, and SP whose change will be

discussed in detail later. Any

of the other registers can hold

for the subroutine.

Lecture No: 14

STACK: Stack is a data structure that behaves in a first in last out manner. It can contain many

elements and there is only

one way in and out of the container. When an element is inserted it sits on top of all other elements

and when an element

is removed the one sitting at top of all others is removed first. To visualize the structure consider a

test tube and put some

balls in it. The second ball will come above the first and the third will come above the second. When

a ball is taken out

only the one at the top can be removed. The operation of placing an element on top of the stack is

called pushing the

element and the operation of removing an element from the top of the stack is called popping the

element. The last thing

pushed is popped out first; the last in first out behavior.

This top of stack is contained in the SP register. The physical address of the stack is obtained by the

SS:SP

P a g e | 109

combination. The stack segment registers tells where the stack is located and the stack pointer marks

the top of stack

inside this segment.

Whenever an element is pushed on the stack SP is decremented by two as the 8088 stack works on

word sized elements.

Single bytes cannot be pushed or popped from the stack. Also it is a decrementing stack. Another

possibility is an

incrementing stack. A decrementing stack moves from higher addresses to lower addresses as

elements are added in it

while an incrementing stack moves from lower addresses to higher addresses as elements are added.

The basic use of the stack is to save things and recover from there when needed. For example we

discussed the

shortcoming in our last example that it destroyed the caller’s registers, and the callers are not

supposed to remember

which registers are destroyed by the thousand routines they use. Using the stack the subroutine can

save the caller’s value

of the registers on the stack, and recover them from there before returning. Meanwhile the

subroutine can freely use the

registers. From the caller’s point of view if the registers contain the same value before and after the

call, it doesn’t matter

if the subroutine used them meanwhile.

Similarly during the CALL operation, the current value of the instruction pointer is automatically

saved on the

stack, and the destination of CALL is loaded in the instruction pointer. Execution therefore resumes

from the destination

P a g e | 110

of CALL. When the RET instruction is executed, it recovers the value of the instruction pointer from

the stack. The next

instruction executed is therefore the one following the CALL. Observe how playing with the

instruction pointer affects the

program flow.

Apart from CALL and RET, the operations that use the stack are PUSH and POP. Two other

operations that will

be discussed later are INT and IRET. Regarding the stack, the operation of PUSH is similar to

CALL however with a

register other than the instruction pointer. For example “push ax” will push the current value of the

AX register on the

stack. The operation of PUSH is shown below.

SP SP – 2

[SP] AX

The operation of POP is the reverse of this. A copy of the element at the top of the stack is made in

the operand, and the

top of the stack is incremented afterwards. The operation of “pop ax” is shown below.

AX [SP]

SP SP + 2

SAVING AND RESTORING REGISTERS: The subroutines we wrote till now have been

destroying certain registers

and our calling code has been carefully written to not use those registers. However this cannot be

remembered for a good

number of subroutines. Therefore our subroutines need to implement some mechanism of retaining

the callers’ value of

P a g e | 111

any registers used.

The trick is to use the PUSH and POP operations and save the callers’ value on the stack and recover

it from there on

return. Our swap subroutine destroyed the AX register while the bubble sort subroutine destroyed

AX, CX, and SI. BX

was not modified in the subroutine. It had the same value at entry and at exit; it was only used by the

subroutine. Our next

example improves on the previous version by saving and restoring any registers that it will modify

using the PUSH and

POP operations.

PUSH

PUSH decrements SP (the stack pointer) by two and then transfers a word from the source operand

to the top of stack now

pointed to by SP. PUSH often is used to place parameters on the stack before calling a procedure;

more generally, it is the

basic means of storing temporary data on the stack.

POP

POP transfers the word at the current top of stack (pointed to by SP) to the destination operand and

then increments SP by

two to point to the new top of stack. POP can be used to move temporary variables from the stack to

registers or memory.

Observe that the operand of PUSH is called a source operand since the data is moving to the stack

from the operand, while

the operand of POP is called destination since data is moving from the stack to the operand.

CALL

P a g e | 112

CALL activates an out-of-line procedure, saving information on the stack to permit a RET (return)

instruction in the

procedure to transfer control back to the instruction following the CALL. For an intra segment direct

CALL, SP is

decremented by two and IP is pushed onto the stack. The target procedure’s relative displacement

from the CALL

instruction is then added to the instruction pointer. For an inter segment direct CALL, SP is

decremented by two, and CS

is pushed onto the stack. CS is replaced by the segment word contained in the instruction. SP again

is decremented by

two. IP is pushed onto the stack and replaced by the offset word in the instruction. The out-of-line

procedure is the

temporary division, the concept of roundabout that we discussed. Near calls are also called intra

segment calls, while far

calls are called inter-segment calls. There are also versions that are called indirect calls; however

they will be discuss later

when they are used.

RET

RET (Return) transfers control from a procedure back to the instruction following the CALL that

activated the procedure.

RET pops the word at the top of the stack (pointed to by register SP) into the instruction pointer and

increments SP by

two. If RETF (inter segment RET) is used the word at the top of the stack is popped into the IP

register and SP is

P a g e | 113

incremented by two. The word at the new top of stack is popped into the CS register, and SP is again

incremented by two.

If an optional pop value has been specified, RET adds that value to SP. This feature may be used to

discard parameters

pushed onto the stack before the execution of the CALL instruction.

Lecture No: 15

PARAMETER PASSING THROUGH STACK

Due to the limited number of registers, parameter passing by registers is constrained in two ways.

The maximum

parameters a subroutine can receive are seven when all the general registers are used. Also, with the

subroutines are

themselves limited in their use of registers, and this limited increases when the subroutine has to

make a nested call

thereby using certain registers as its parameters. Due to this, parameter passing by registers is not

expandable and

generalizable. However this is the fastest mechanism available for passing parameters and is used

where speed is

important. Considering stack as an alternate, we observe that whatever data is placed there, it stays

there, and across

function calls as well. For example the bubble sort subroutine needs an array address and the count

of elements. If we

place both of these on the stack, and call the subroutine afterwards, it will stay there. The subroutine

is invoked with its

return address on top of the stack and its parameters beneath it.

P a g e | 114

To handle this using PUSH and POP, we must first pop the return address in a register, then pop the

operands, and

push the return address back on the stack so that RET will function normally. However so much

effort doesn’t seem to

pay back the price.

Recall that the default segment association of the BP register is the stack segment and the reason for

this

association had been deferred for now. The reason is to peek inside the stack using the BP register

and read the parameters

without removing them and without touching the stack pointer. The stack pointer could not be used

for this purpose, as it

cannot be used in an effective address. It is automatically used as a pointer and cannot be explicitly

used. Also the stack

pointer is a dynamic pointer and sometimes changes without telling us in the background.

When the bubble sort subroutine is called, the stack pointer is pointing to the return address. Two

bytes below it is

the second parameter and four bytes below is the first parameter. The stack pointer is a reference

point to these

parameters. If the value of SP is captured in BP, then the return address is located at [bp+0], the

second parameter is at

[bp+2], and the first parameter is at [bp+4]. This is because SP and BP both had the same value and

they both defaulted to

the same segment, the stack segment.

This copying of SP into BP is like taking a snapshot or like freezing the stack at that moment. Even

if more

P a g e | 115

pushes are made on the stack decrementing the stack pointer, our reference point will not change.

The parameters will still

be accessible at the same offsets from the base pointer. If however the stack pointer increments

beyond the base pointer,

the references will become invalid. The base pointer will act as the datum point to access our

parameters. However we

have destroyed the original value of BP in the process, and this will cause problems in nested calls

where both the outer

and the inner subroutines need to access their own parameters. The outer subroutine will have its

base pointer destroyed

after the call and will be unable to access its parameters.

To solve both of these problems, we reach at the standard way of accessing parameters on the stack.

The first two

instructions of any subroutines accessing its parameters from the stack are given below.

push bp

mov bp, sp

As a result our datum point has shifted by a word. Now the old value of BP will be contained in [bp]

and the return

address will be at [bp+2]. The second parameters will be [bp+4] while the first one will be at [bp+6].

We give an example

of bubble sort subroutine using this standard way of argument passing through stack.

Stack Clearing by Caller or Callee

Parameters pushed for a subroutine are a waste after the subroutine has returned. They have to be

cleared from the stack.

P a g e | 116

Either of the caller and the callee can take the responsibility of clearing them from there. If the callee

has to clear the stack

it cannot do this easily unless RET n exists. That is why most general processors have this

instruction. Stack clearing by

the caller needs an extra instruction on behalf of the caller after every call made to the subroutine,

unnecessarily

increasing instructions in the program. If there are thousand calls to a subroutine the code to clear the

stack isrepeated a

thousand times. Therefore the prevalent convention in most high level languages is stack clearing by

the callee; even

though the other convention is still used in some languages.

If RET n is not available, stack clearing by the callee is a complicated process. It will have to save

the return

address in a register, then remove the parameters, and then place back the return address so that RET

will function. When

this instruction was introduced in processors, only then high level language designers switched to

stack clearing by the

callee. This is also exactly why RET n adds n to SP after performing the operation of RET. The

other way around would

be totally useless for our purpose. Consider the stack condition at the time of RET and this will

become clear why this will

be useless. Also observe that RET n has discarded the arguments rather than popping them as they

were no longer of any

use either of the caller or the callee.

P a g e | 117

The strong argument in favour of callee cleared stacks is that the arguments were placed on the stack

for the

subroutine, the caller did not needed them for itself, so the subroutine is responsible for removing

them. Removing the

arguments is important as if the stack is not cleared or is partially cleared the stack will eventually

become full, SP will

reach 0, and thereafter wraparound producing unexpected results. This is called stack overflow.

Therefore clearing

anything placed on the stack is very important.

LOCAL VARIABLES: Another important role of the stack is in the creation of local variables that

are only needed

while the subroutine is in execution and not afterwards. They should not take permanent space like

global variables. Local

variables should be created when the subroutine is called and discarded afterwards. So that the

spaced used by them can

be reused for the local variables of another subroutine. They only have meaning inside the

subroutine and no meaning

outside it.

The most convenient place to store these variables is the stack. We need some special manipulation

of the stack for this

task. We need to produce a gap in the stack for our variables. This is explained with the help of the

swapflag in the bubble

sort example.

The swapflag we have declared as a word occupying space permanently is only needed by the

bubble sort subroutine and

P a g e | 118

should be a local variable. Actually the variable was introduced with the intent of making it a local

variable at this time.

The stack pointer will be decremented by an extra two bytes thereby producing a gap in which a

word can reside. This gap

will be used for our temporary, local, or automatic variable; however we name it. We can decrement

it as much as we

want producing the desired space, however the decrement must be by an even number, as the unit of

stack operation is a

word. In our case we needed just one word. Also the most convenient position for this gap is

immediately after saving the

value of SP in BP. So that the same base pointer can be used to access the local variables as well;

this time using negative

offsets. The standard way to start a subroutine which needs to access parameters and has local

variables is as under. push bp

mov bp, sp sub sp, 2

Lecture No: 16

Display Memory: The debugger gives a very close vision of the processor. That is why every

program written

till now was executed inside the debugger. Also the debugger is a very useful tool in assembly

language program

development, since many bugs only become visible when each instruction is independently

monitored the way the

debugger allows us to do.

ASCII CODES: An ‘A’ on any computer and any operating system is an ‘A’ on every other

computer and operating

P a g e | 119

system. This is because a standard numeric representation of all commonly used characters has been

developed. This is

called the ASCII code, where ASCII stands for American Standard Code for

Information Interchange. The name depicts that this is a code that allows the interchange of

information; ‘A’ written on

one computer will remain an ‘A’ on another. The ASCII table lists all defined characters and

symbols and their

standardized numbers. All ASCII based computers use the same code. There are few other standards

like EBCDIC and

gray codes, but ASCII has become the most prevalent standard and is used for Internet

communication as well. It has

become the de facto standard for global communication. The character mode displays of our

computer use the ASCII

standard. Some newer operating systems use a new standard Unicode but it is not relevant to us in

the current discussion.

Standard ASCII has 128 characters with numbers assigned from 0 to 127. When IBM PC was

introduced, they

extended the standard ASCII and defined 128 more characters. Thus extending the total number of

symbols from 128 to

256 numbered from 0 to 255 fitting in an 8-bit byte. The newer characters were used for line

drawing, window corners,

and some non-English characters. The need for these characters was never felt on teletype terminals,

but with the advent

of IBM PC and its full screen display, these semi-graphics characters were the need of the day. Keep

in mind that at that

P a g e | 120

time there was no graphics mode available.

The important thing to observe in the ASCII table is the contiguous arrangement of the uppercase

alphabets (41-

5A), the lowercase alphabets (61-7A), and the numbers (30-39). This helps in certain operations with

ASCII, for example

converting the case of characters by adding or subtracting 0x20 from it. It also helps in converting a

digit into its ASCII

representation by adding 0x30 to it.

DISPLAY MEMORY FORMATION: We will explore the working of the display with ASCII

codes, since it is our

immediately accessible hardware. When 0x40 is sent to the VGA card, it will turn pixels on and off

in such a way that a

visual representation of ‘A’ appears on the screen. It has no reality, just an interpretation.

The video device is seen by the computer as a memory area containing the ASCII codes that are

currently

displayed on the screen and a set of I/O ports controlling things like the resolution, the cursor height,

and the cursor

position. The VGA memory is seen by the computer just like its own memory. There is no

difference; rather the computer

doesn’t differentiate, as it is accessible on the same bus as the system memory. Therefore if that

appropriate block of the

screen is cleared, the screen will be cleared. If the

ASCII of ‘A’ is placed somewhere in that block, the shape of ‘A’ will appear on the screen at a

corresponding place.

P a g e | 121

This correspondence must be defined as the memory is a single dimensional space while the screen

is two dimensional

having 80 rows and 25 columns. The memory is linearly mapped on this two dimensional space, just

like a two

dimensional is mapped in linear memory. There is one word per character in which a byte is needed

for the ASCII code

and the other byte is used for the character’s attributes discussed later. Now the first 80 words will

correspond to the first

row of the screen and the next 80 words will correspond to the next row. By making the memory on

the video controller

accessible to the processor via the system bus, the processor is now in control of what is displayed

on the screen.

The three important things that we discussed are.

• One screen location corresponds to a word in the video memory

• The video controller memory is accessible to the processor like its own memory.

• ASCII code of a character placed at a cell in the VGA memory will cause the corresponding ASCII

shape to be

displayed on the corresponding screen location.

Display Memory Base Address: memory at which the video controller’s memory is mapped must

be a standard, so that

the program can be written in a video card independent manner. Otherwise if different vendors map

their video memory at

different places in the address space, as was the problem in the start, writing software was a

headache. BIOS vendors had

P a g e | 122

a problem of dealing with various card vendors. The IBM PC text mode color display is now fixed

so that system software

can work uniformly. It was fixed at the physical memory location of B8000. The first byte at this

location contains the

ASCII for the character displayed at the top left of the video screen. Dropping the zero we can load

the rest in a segment

register to access the video memory. If we do something in this memory, the effect can be seen on

the screen. For example

we can write a virus that makes any character we write drop to the bottom of the screen.

Attribute Byte

The second byte in the word designated for one screen location holds the foreground and

background colors for the

character. This is called its video attribute. So the pair of the ASCII code in one byte and the

attribute in the second byte

makes the word that corresponds to one location on the screen. The lower address contains the code

while the higher one

contains the attribute. The attribute byte as detailed below has the RGB for the foreground and the

background. It has an

intensity bit for the foreground color as well thus making 16 possible colors of the foreground and 8

possible colors for

the background. When bit 7 is set the character keeps on blinking on the screen. This bit has some

more interpretations

like background intensity that has to be activated in the video controller through its I/O ports.

7 6 5 4 3 2 1 0

7 – Blinking of foreground character

P a g e | 123

6 – Red component of background color

5 – Green component of background color

4 – Blue component of background color

3 – Intensity component of foreground color

2 – Red component of foreground color

1 – Green component of foreground color

0 – Blue component of foreground color

Display Examples

Both DS and ES can be used to access the video memory. However we commonly keep DS for

accessing our data, and

load ES with the segment of video memory. Loading a segment register with an immediate operand

is not allowed in the

8088 architecture. We therefore load the segment register via a general purpose register. Other

methods are loading from a

memory location and a combination of push and pop.

mov ax, 0xb800

mov es, ax

This operation has opened a window to the video memory. Now the following instruction will print

an ‘A’ on the top left

of the screen in white color on black background.

mov word [es:0], 0x0741

The segment override is used since ES is pointing to the video memory. Since the first word is

written to, the character

will appear at the top left of the screen. The 41 that goes in the lower byte is the ASCII code for ‘A’.

The 07 that goes in

P a g e | 124

the higher byte is the attribute with I=0, R=1, G=1, B=1 for the foreground, meaning white color in

low intensity and R=0,

G=0, B=0 for the background meaning black color and the most significant bit cleared so that there

is no blinking. Now

consider the following instruction.

mov word [es:160], 0x1230

This is displayed 80 words after the start and there are 80 characters in one screen row. Therefore

this is displayed on the

first column of the second line. The ASCII code used is 30, which represents a ‘0’ while the attribute

byte is 12 meaning

green color on blue background.

Lecture No: 17

HELLO WORLD IN ASSEMBLY LANGUAGE: To declare a character in assembly language,

we store its ASCII

code in a byte. The assembler provides us with another syntax that doesn’t forces us to remember the

ASCII code. The

assembler also provides a syntax that simplifies declaration of consecutive characters, usually called

a string. The three

ways used below are identical in their meaning.

db 0x61, 0x62, 0x63

db 'a', 'b', 'c'

db 'abc'

When characters are stored in any high level or low level language the actual thing stored in a byte is

their ASCII code.

The only thing the language helps in is a simplified declaration.

P a g e | 125

NUMBER PRINTING IN ASSEMBLY: Another problem related to the display is printing

numbers. Every high level

language allows some simple way to print numbers on the screen. As we have seen, everything on

the screen is a pair of

ASCII code and its attribute and a number is a raw binary number and not a collection of ASCII

codes. For example a 10

is stored as a 10 and not as the ASCII code of 1 followed by the ASCII code of 0. If this 10 is stored

in a screen location,

the output will be meaningless, as the character associate to ASCII code 10 will be shown on the

screen. So there is a

process that converts a number in its ASCII representation. This process works for any number in

any base.

Number Printing Algorithm: The key idea is to divide the number by the base number, 10 in the

case of decimal. The

remainder can be from 0-9 and is the right most digit of the original number. The remaining digits

fall in the quotient. The

remainder can be easily converted into its ASCII equivalent and printed on the screen. The other

digits can be printed in a

similar manner by dividing the quotient again by 10 to separate the next digit and so on. However

the problem with this

approach is that the first digit printed is the right most one. For example 253 will be printed as 352.

The remainder after

first division was 3, after second division was 5 and after the third division was 2. We have to

somehow correct the order

P a g e | 126

so that the actual number 253 is displayed, and the trick is to use the stack since the stack is a Last In

First Out structure so

if 3, 5, and 2 are pushed on it, 2, 5, and 3 will come out in this order. The steps of our algorithm are

outlined below.

• Divide the number by base (10 in case of decimal)

• The remainder is its right most digit

• Convert the digit to its ASCII representation (Add 0x30 to the remainder in case of decimal)

• Save this digit on stack

• If the quotient is non-zero repeat the whole process to get the next digit, otherwise stop

• Pop digits one by one and print on screen left to right

DIV Instruction: The division used in the process is integer division and not floating point division.

Integer division

gives an integer quotient and an integer remainder. A division algorithm is now needed. Fortunately

or unfortunately there

is a DIV instruction available in the 8088 processor. There are two forms of the DIV instruction. The

first form divides a

32bit number in DX:AX by its 16bit operand and stores the 16bit quotient in AX and the 16bit

remainder in DX. The

second form divides a 16bit number in AX by its 8bit operand and stores the 8bit quotient in AL and

the 8bit remainder in

AH. For example “DIV BL” has an 8bit operand, so the implied dividend is 16bit and is stored in the

AX register and

“DIV BX” has a 16bit operand, so the implied dividend is 32bit and is therefore stored in the

concatenation of the DX and

AX registers. The higher word is stored in DX and the lower word in AX.

P a g e | 127

If a large number is divided by a very small number it is possible that the quotient is larger than the

space provided for it

in the implied destination. In this case an interrupt is automatically generated and the program is

usually terminated as a

result. This is called a divide overflow error; just like the calculator shows an –E– when the result

cannot be displayed.

This interrupt will be discussed later in the discussion of interrupts. DIV (divide) performs an

unsigned division of the

accumulator (and its extension) by the source operand. If the source operand is a byte, it is divided

into the two-byte

dividend assumed to be in registers AL and AH. The byte quotient is returned in AL, and the byte

remainder is returned in

AH. If the source operand is a word, it is divided into the two-word dividend in registers AX and

DX. The word quotient

is returned in AX, and the word remainder is returned in DX. If the quotient exceeds the capacity of

its destination register

(FF for byte source, FFFF for word source), as when division by zero is attempted, a type 0 interrupt

is generated, and the

quotient and remainder are undefined.

Lecture No: 18

SCREEN LOCATION CALCULATION: For mapping from the two dimensional coordinate

system of the screen to

the one dimensional memory, we need to multiply the row number by 80 since there are 80 columns

per row and add the

column number to it and again multiply by two since there are 2 bytes for each character.

P a g e | 128

For this purpose the multiplication routine written previously can be used. However we introduce an

instruction of

the 8088 microprocessor at this time that can multiply 8bit or 16bit numbers.

MUL Instruction

MUL (multiply) performs an unsigned multiplication of the source operand and the accumulator. If

the source operand is

a byte, then it is multiplied by register AL and the double-length result is returned in AH and AL. If

the source operand is

a word, then it is multiplied by register AX, and the double-length result is returned in registers DX

and AX.

Push and pop operations always operate on words; however data can be read as a word or as a byte.

For example

we read the lower byte of the parameter y-position in this case.

STRING PROCESSING

In this chapter we will discuss a bit more powerful instructions that can process blocks of data in one

go. They are

called block processing or string instructions. This is the appropriate place to discuss these

instructions as we have just

introduced a block of memory, which is the video memory. The vision of this memory for the

processor is just a block of

memory starting at a special address. For example the clear screen operation initializes this whole

block to 0741.

There are just 5 block processing instructions in 8088. In the primitive form, the instructions

themselves operate

P a g e | 129

on a single cell of memory at one time. However a special prefix repeats the instruction in hardware

called the REP prefix.

The REP prefix allows these instructions to operate on a number of data elements in one instruction.

This is not like a

loop; rather this repetition is hard coded in the processor. The five instructions are STOS, LODS,

CMPS, SCAS, and

MOVS called store string, load string, compare string, scan string, and move string respectively.

MOVS is the instruction

that allows memory to memory moves, as was discussed in the exceptions to the memory to memory

movement rules.

String instructions are complex instruction in that they perform a number of tasks against one

instruction. And with the

REP prefix they perform the task of a complex loop in one instruction. This causes drastic speed

improvements in

operations on large blocks of memory. The reduction in code size and the improvement in speed are

the two reasons why

these instructions were introduced in the 8088 processor.

There are a number of common things in these instructions. Firstly they all work on a block of data.

DI and SI are

used to access memory. SI and DI are called source index and destination index because of string

instructions. Whenever

an instruction needs a memory source, DS:SI holds the pointer to it. An override is possible that can

change the

association from DS but the default is DS. Whenever a string instruction needs a memory

destination, ES:DI holds the

P a g e | 130

pointer to it. No override is possible in this case. Whenever a byte register is needed, AL holds the

value. Whenever a

word register is used AX holds the value. For example STOS stores a register in memory so AL or

AX is the register used

and ES:DI points to the destination. The LODS instruction loads from memory to register so the

source is pointed to by

DS:SI and the register used is AL or AX.

String instructions work on a block of data. A block has a start and an end. The instructions can

work from the

start towards the end and from the end towards the start. In fact they can work in both directions, and

they must be

allowed to work in both directions otherwise certain operations with overlapping blocks become

impossible. This problem

is discussed in detail later. The direction of movement is controlled with the Direction Flag (DF) in

the flags register. If

this flag is cleared the direction is from lower addresses towards higher addresses and if this flag is

set the direction is

from higher addresses to lower addresses. If DF is cleared, this is called the auto-increment mode of

string instruction, and

if DF is set, this is called the auto-decrement mode. There are two instructions to set and clear the

direction flag.

cld ; clear direction flag

std ; set direction flag

Every string instruction has two variants; a byte variant and a word variant. For example the two

variants of

P a g e | 131

STOS are STOSB and STOSW. Similarly the variants for the other string instructions are attained by

appending a B or a

W to the instruction name. The operation of each of the string instructions and each of the repetition

prefixes is discussed

below.

STOS

STOS transfers a byte or word from register AL or AX to the string element addressed by ES:DI and

updates DI to point

to the next location. STOS is often used to clear a block of memory or fill it with a constant.

The implied source will always be in AL or AX. If DF is clear, SI will be incremented by one or two

depending of

whether STOSB or STOSW is used. If DF is set SI will be decremented by one or two depending of

whether STOSB or

STOSW is used. If REP is used before this instruction, the process will be repeated CX times. CX is

called the counter

register because of the special treatment given to it in the LOOP and JCXZ instructions and the REP

set of prefixes. So if

REP is used with STOS the whole block of memory will be filled with a constant value. REP will

always decrement CX

like the LOOP instruction and this cannot be changed with the direction flag. It is also independent

of whether the byte or

the word variant is used. It always decrements by one; therefore CX has count of repetitions and not

the count of bytes.

LODS: LODS transfers a byte or word from the source location DS:SI to AL or AX and updates SI

to point to the next

P a g e | 132

location. LODS is generally used in a loop and not with the REP prefix since the value previously

loaded in the register is

overwritten if the instruction is repeated and only the last value of the block remains in the register.

SCAS

SCAS compares a source byte or word in register AL or AX with the destination string element

addressed by ES:DI and

updates the flags. DI is updated to point to the next location. SCAS is often used to locate equality or

in-equality in a

string through the use of an appropriate prefix.

SCAS is a bit different from the other instructions. This is more like the CMP instruction in that it

does

subtraction of its operands. The prefixes REPE (repeat while equal) and REPNE (repeat while not

equal) are used with

this instruction. The instruction is used to locate a byte in AL in the block of memory. When the first

equality or

inequality is encountered; both have uses. For example this instruction can be used to search for a 0

in a null terminated

string to calculate the length of the string. In this form REPNE will be used to repeat while the null

is not there.

MOVS

MOVS transfers a byte or word from the source location DS:SI to the destination ES:DI and updates

SI and DI to point to

the next locations. MOVS is used to move a block of memory. The DF is important in the case of

overlapping blocks. For

P a g e | 133

example when the source and destination blocks overlap and the source is below the destination

copy must be done

upwards while if the destination is below the source copy must be done downwards. We cannot

perform both these copy

operations properly if the direction flag was not provided. If the source is below the destination and

an upwards copy is

used the source to be copied is destroyed. If however the copy is done downwards the portion of

source destroyed is the

one that has already been copied. Therefore we need the control of the direction flag to handle this

problem. This problem

is further detailed in a later example.

CMPS

CMPS subtracts the source location DS:SI from the destination location ES:DI. Source and

Destination are unaffected. SI

and DI are updated accordingly. CMPS compares two blocks of memory for equality or inequality of

the block. It

subtracts byte by byte or word by word. If used with a REPE or a REPNE prefix is repeats as long as

the blocks are same

or as long as they are different. For example it can be used for find a substring. A substring is a

string that is contained in

another string. For example “has” is contained in “Mary has a little lamp.” Using CMPS we can do

the operation of a

complex loop in a single instruction. Only the REPE and REPNE prefixes are meaningful with this

instruction.

Lecture No: 19

P a g e | 134

REP Prefix

REP repeats the following string instruction CX times. The use of CX is implied with the REP

prefix. The decrement in

CX doesn’t affect any flags and the jump is also independent of the flags, just like JCXZ.

REPE and REPNE Prefixes

REPE or REPZ repeat the following string instruction while the zero flag is set and REPNE or

REPNZ repeat the

following instruction while the zero flag is not set. REPE or REPNE are used with the SCAS or

CMPS instructions. The

other string instructions have nothing to do with the condition since they are performing no

comparison. Also the initial

state of flags before the string instruction does not affect the operation. The most complex operation

of the string

instruction is with these prefixes.

A space efficient way to zero a 16bit register is to XOR it with itself. Remember that exclusive or

results in a zero

whenever the bits at the source and at the destination are same. This instruction takes just two bytes

compared to “mov di,

0” which would take three. This is a standard way to zero a 16bit register.

Inside the debugger the operation of the string instruction can be monitored. The trace into command

can be used to

monitor every repetition of the string instruction. However screen will not be cleared inside the

debugger as the debugger

overwrites its display on the screen. CX decrements with every iteration, DI increments by 2. The

first access is made at

P a g e | 135

B800:0000 and the second at B800:0002 and so on. A complex and inefficient loop is replaced with

a fast and simple

instruction that does the same operation many times faster.

LODS Example – String Printing

The use of LODS with the REP prefix is not meaningful as only the last value loaded will remain in

the register. It is

normally used in a loop paired with a STOS instruction to do some block processing. We use LODS

to pick the data, do

the processing, and then use STOS to put it back or at some other place. For example in string

printing, we will use LODS

to read a character of the string, attach the attribute byte to it, and use STOS to write it on the video

memory.

SCAS Example – String Length

Many higher level languages do not explicitly store string length; rather they use a null character, a

character with an

ASCII code of zero, to signal the end of a string. In assembly language programs, it is also easier to

store a zero at the end

of the string, instead of calculating the length of string, which is very difficult process for longer

strings. So we delegate

length calculation to the processor and modify our string printing subroutine to take a null

terminated string and no length.

We use SCASB with REPNE and a zero in AL to find a zero byte in the string. In CX we load the

maximum possible size,

which is 64K bytes. However actual strings will be much smaller. An important thing regarding

SCAS and CMPS is that

P a g e | 136

if they stop due to equality or inequality, the index registers have already incremented. Therefore

when SCAS will stop DI

would be pointing past the null character.

Lecture No: 20

LES and LDS Instructions

Since the string instructions need their source and destination in the form of a segment offset pair,

there are two special

instructions that load a segment register and a general purpose register from two consecutive

memory locations. LES

loads ES while LDS loads DS. Both these instructions have two parameters, one is the general

purpose register to be

loaded and the other is the memory location from which to load these registers. The major

application of these instructions

is when a subroutine receives a segment offset pair as an argument and the pair is to be loaded in a

segment and an offset

register. According to Intel rules of significance the word at higher address is loaded in the segment

register while the

word at lower address is loaded in the offset register. As parameters segment should be pushed first

so that it ends up at a

higher address and the offset should be pushed afterwards. When loading the lower address will be

given. For example

“lds si, [bp+4]” will load SI from BP+4 and DS from BP+6.

MOVS EXAMPLE – SCREEN SCROLLING

MOVS has the two forms MOVSB and MOVSW. REP allows the instruction to be repeated CX

times allowing blocks of

P a g e | 137

memory to be copied. We will perform this copy of the video screen.

Scrolling is the process when all the lines on the screen move one or more lines towards the top of

towards the

bottom and the new line that appears on the top or the bottom is cleared. Scrolling is a process on

which string movement

is naturally applicable. REP with MOVS will utilize the full processor power to do the scrolling in

minimum time.

CMPS EXAMPLE – STRING COMPARISON

For the last string instruction, we take string comparison as an example. The subroutine will take two

segment

offset pairs containing the address of the two null terminated strings. The subroutine will return 0 if

the strings

are different and 1 if they are same. The AX register will be used to hold the return value.

Lecture No: 21

Interrupts: Interrupts in reality are events that occurre outside the processor and the processor must

be

informed about them. Interrupts are asynchronous and unpredictable. Asynchronous means that the

interrupts

occur, independent of the working of the processor, i.e. independent of the instruction currently

executing.

Synchronous events are those that occur side by side with another activity. Interrupts must be

asynchronous as

they are generated by the external world which is unaware of the happenings inside the processor.

True

P a g e | 138

interrupts that occur in real time are asynchronous with the execution. Also it is unpredictable at

which time an

interrupt will come. The two concepts of being unpredictable and asynchronous are overlapping.

Unpredictable

means the time at which an interrupt will come cannot be predicted, while asynchronous means that

the

interrupt has nothing to do with the currently executing instruction and the current state of the

processor.

The 8088 processor divides interrupts into two classes. Software interrupts and hardware interrupts.

Hardware interrupts

are the real interrupts generated by the external world as discussed above. Software interrupts on the

contrary are not

generated from outside the processor. They just provide an extended far call mechanism. Far all

allows us to jump

anywhere in the whole megabyte of memory. To return from the target we place both the segment

and offset on the stack.

Software interrupts show a similar behavior. It however pushes one more thing before both the

segment and offset and

that is the FLAGS register. Just like the far call loads new values in CS and IP, the interrupt call

loads new values in CS,

IP, and FLAGS. Therefore the only way to retain the value of original FLAGS register is to push and

pop as part of

interrupt call and return instructions. Pushing and popping inside the routine will not work as the

routine started with an

already tampered value.

P a g e | 139

The discussion of real time interrupts is deferred till the next chapter. They play the critical part in

control applications

where external hardware must be control and events and changes therein must be appropriately

responded by the

processor. To generate an interrupt the INT instruction is used. The routine that executes in response

to an INT instruction

is called the interrupt service routine (ISR) or the interrupt handler. Taking example from real time

interrupts the routine

to instruct an external hardware to close the valve of a boiler in response to an interrupt from the

pressure sensor is an

interrupt routine.

The software interrupt mechanism in 8088 uses vectored interrupts meaning that the address of the

interrupt routine is not

directly mentioned in an interrupt call, rather the address is lookup up from a table. 8088 provides a

mechanism for

mapping interrupts to interrupt handlers. Introducing a new entry in this mapping table is called

hooking an interrupt.

Syntax of the INT instruction is very simple. It takes a single byte argument varying from 0-255.

This is the interrupt

number informing the processor, which interrupt is currently of interest. This number correlates to

the interrupt handler

routine by a routing or vectoring mechanism. A few interrupt numbers in the start are reserved and

we generally do not

use them. They are related to the processor working. For example INT 0 is the divide by zero

interrupt. A list of all

P a g e | 140

reserved interrupts is given later. Such interrupts are programmed in the hardware to generate the

designated interrupt

when the specified condition arises. The remaining interrupts are provided by the processor for our

use. Some of these

were reserved by the IBM PC designers to interface user programs with system software like DOS

and BIOS. This was

the logical choice for them as interrupts provided a very flexible architecture. The remaining

interrupts are totally free for

use in user software. The correlation process from the interrupt number to the interrupt handler uses

a table called

interrupt vector table. Its loation is fixed to physical memory address zero. Each entry of the table is

four bytes long

containing the segment and offset of the interrupt routine for the corresponding interrupt number.

The first two bytes in

the entry contain the offset and the next two bytes contain the segment. The little endian rule of

putting the more

significant part (segment) at a higher address is seen here as well. Mathematically offset of the

interrupt will be at nx4

while the segment will be at nx4+2. One entry in this table is called a vector. If the vector is changed

for interrupt 0 then

INT 0 will take execution to the new handler whose address is now placed at those four bytes. INT 1

vector occupies

location 4, 5, 6, and 7 and similarly vector for INT 2 occupies locations 8, 9, 10, and 11. As the table

is located in RAM it

P a g e | 141

can be changed anytime. Immediately after changing it the interrupt mapping is changed and now

the interrupt will result

in execution of the new routine. This indirection gives the mechanism extreme flexibility.

The operation of interrupt is same whether it is the result of an INT instruction (software interrupt)

or it is generated by an

external hardware which passes the interrupt number by a different mechanism. The currently

executing instruction is

completed, the current value of FLAGS is pushed on the stack, then the current code segment is

pushed, then the offset of

the next instruction is pushed. After this it automatically clears the trap flag and the interrupt flag to

disallow further

interrupts until the current routine finishes. After this it loads the word at nx4 in IP and the word at

nx4+2 in CS if

interrupt n was generated. As soon as these values are loaded in CS and IP execution goes to the start

of the interrupt

handler. When the handler finishes its work it uses the IRET instruction to return to the caller. IRET

pops IP, then CS, and

then FLAGS. The original value of IF and TF is restored which reenables further interrupts. IF and

TF will be discussed in

detail in the discussion of real time interrupts. We have discussed three things till now.

1. The INT and IRET instruction format and syntax

2. The formation of IVT (interrupt vector table)

3. Operation of the processor when an interrupt in generated

Just as discussed in the subroutines chapter, the processor will not match interrupt calls to interrupt

returns. If a RETF is

P a g e | 142

used in the end of an ISR the processor will still return to the caller but the FLAGS will remain on

the stack which will

destroy the expectations of the caller with the stack. If we know what we are doing we may use such

different

combination of instructions. Generally we will use IRET to return from an interrupt routine. Apart

from indirection the

software interrupt mechanism is similar to CALL and RET. Indirection is the major difference.

The operation of INT can be written as:

· sp ← sp+2

· [sp] ← flag

· sp ← sp+2

· if ← 0

· tf ← 0

· [sp] ← cs

· sp ← sp+2

· [sp] ← ip

· ip ← [0:N*4]

· cs ← [0:N*4+2]

The operation of IRET can be written as:

· ip ← [sp]

· sp ← sp-2

· cs ← [sp]

· sp ← sp-2

· flag ← [sp]

· sp ← sp-2

P a g e | 143

The above is the microcode description of INT and IRET. To obey an assembly language instruction

the processor breaks

it down into small opertions. By reading the microcode of an instruction its working can be

completely understood.

The interrupt mechanism we have studied is an extended far call mechanism. It pushes FLAGS in

addition to CS and IP

and it loads CS and IP with a special mechanism of indirection. It is just like the table of contents

that is located at a fixed

position and allows going directly to chapter 3, to chapter 4 etc. If this association is changed in the

table of contents the

direction of the reader changes. For example if Chapter 2 starts at page 220 while 240 is written in

the table of contents,

the reader will go to page 240 and not 220. The table of contents entry is a vector to point to map the

chapter number to

page number. IVT has 256 chapters and the interrupt mechanism looks up the appropriate chapter

number to reach the

desired page to find the interrupt routine.

Another important similarlity is that table of contents is always placed at the start of the book, a well

known place. Its

physical position is fixed. If some publishers put it at some place, others at another place, the reader

will be unable to find

the desired chapter. Similarly in 8088 the physical memory address zero is fixed for the IVT and it

occupies exactly a

kilobyte of memory as the 256x4=1K where 256 is the number of possible interrupt vectors while

the size of one vector is

P a g e | 144

4 bytes.

Lecture No: 22

Interrupts introduce temporary breakage in the program flow, sometimes programmed (software

interrupts) and

unprogrammed at other times (hardware interrupts). By hooking interrupts various system

functionalities can be

controlled. The interrupts reserved by the processor and having special functions in 8088 are listed

below:

· INT 0, Division by zero

Meaning the quotient did not fit in the destination register. This is a bit different as this interrupt

does not return to

the next instruction, rather it returns to the same instruction that generated it, a DIV instruction

ofcourse. Here INT

0 is automatically generated by a DIV when a specific situation arises, there is no INT 0 instruction.

· INT 1, Trap, Single step Interrupt

This interrupt is used in debugging with the trap flag. If the trap flag is set the Single Step Interrupt

is generated

after every instruction. By hooking this interrupt a debugger can get control after every instruction

and display the

registers etc. 8088 was the first processor that has this ability to support debugging.

· INT 2, NMI-Non Maskable Interrupt

Real interrupts come from outside the processor. INT 0 is not real as it is generated from inside. For

real interrupts

there are two pins in the processor, the INT pin and the NMI pin. The processor can be directed to

listen or not to

P a g e | 145

listen to the INT pin. Consider a recording studio, when the recording is going on, doors are closed

so that no

interruption occurs, and when there is a break, the doors are opened so that if someone is waiting

outside can come

it. However if there is an urgency like fire outside then the door must be broken and the recording

must not be

catered for. For such situations is the NMI pin which informs about fatal hardware failures in the

system and is tied

to interrupt 2. INT pin can be masked but NMI cannot be masked.

INT 3, Debug Interrupt

The only special thing about this interrupt is that it has a single byte opcode and not a two byte

combination where

the second byte tells the interrupt number. This allows it to replace any instruction whatsoever. It is

also used by the

debugger and will be discussed in detail with the debugger working.

· INT 4, Arithmetic Overflow, change of sign bit

The overflow flag is set if the sign bit unexpectedly changes as a result of a mathemcial or logical

instruction.

However the overflow flag signals a real overflow only if the numbers in question are treated as

signed numbers.

So this interrupt is not automatically generated but as a result of a special instruction INTO (interrupt

on overflow)

if the overflow flag is set. Otherwise the INTO instruction behaves like a NOP (no operation).

These are the five interrupts reserved by Intel and are generally not used in our operations.

P a g e | 146

