
P a g e | 1

SONU ILYAS MUGHAL (MIT DEPARTMENT 2ND

SEMESTER)

 ID : mc180402118

P a g e | 2

Software engineering (CS504)

What is software engineering?

Software engineering is the process of analyzing user needs and

designing, constructing, and testing end user applications that will

satisfy these needs through the use of software programming languages.

It is the application of engineering principles to software development.

2ND DEFINITION

Software engineering is not just concerned with the technical processes

of software development but also with activities such as software project

management and with the development of tools, methods and theories to

support software production”.

Why is software engineering important?

Software engineering is important because specific software is

needed in almost every industry, in every business, and for every

function. It becomes more important as time goes on – if something

breaks within your application portfolio, a quick, efficient, and effective

fix needs to happen as soon as possible.

P a g e | 3

Why Study Software Engineering? ... Software Engineering applies

the knowledge and theoretical understanding gained through computer

science to building high-quality software products. As a maturing

discipline, software is becoming more and more important in our

everyday lives.

What do software engineers do?

A software engineer applies mathematical analysis and the principles of

computer science in order to design and develop computer software. ...

When working with a client, a software engineer will typically analyze

the client's needs, then design, test, and develop the

computer software in order to meet those needs.

Why is software so important?

The operating system controls the basic functions of a computer or

network. It's a software program that enables hardware to communicate

and operate with the computer software. Microsoft (MSFT) is a leading

player in this segment with 90% of personal computers using Windows

as their operating system.

WHAT IS SOFTWEAR CRISIS?

Software crisis is a term used in the early days of computing science for

the difficulty of writing useful and efficient computer programs in the

required time. The software crisis was due to the rapid increases in

computer power and the complexity of the problems that could not be

tackled. With the increase in the complexity of the software, many

software problems arose because existing methods were insufficient.

The term "software crisis" was coined by some attendees at the

first NATO Software Engineering Conference in 1968 at Garmisch,

Germany.[1][2] Edsger Dijkstra's 1972 ACM Turing Award Lecture

makes reference to this same problem:[3]

https://en.wikipedia.org/wiki/Computing_science
https://en.wikipedia.org/wiki/NATO_Software_Engineering_Conferences
https://en.wikipedia.org/wiki/Garmisch
https://en.wikipedia.org/wiki/Software_crisis#cite_note-nato-1
https://en.wikipedia.org/wiki/Software_crisis#cite_note-nato2-2
https://en.wikipedia.org/wiki/Edsger_Dijkstra
https://en.wikipedia.org/wiki/ACM_Turing_Award
https://en.wikipedia.org/wiki/Software_crisis#cite_note-ewd340-3

P a g e | 4

The major cause of the software crisis is that the machines have become

several orders of magnitude more powerful! To put it quite bluntly: as

long as there were no machines, programming was no problem at all;

when we had a few weak computers, programming became a mild

problem, and now we have gigantic computers, programming has

become an equally gigantic problem.

According to handout?

In early 60s software had suffered from the similar kind of problem to

which we call

Software Crisis. Techniques that were used to develop small software

were not applicable

for large software systems. This thing resulted in the following

consequences.

➢ In most of the cases that software which was tried to be build using

those old tools

➢ and techniques were not complete.

o Most of the times it was delivered too late.

o Most of the projects were over-budgeted.

o And in most of the case systems build using these techniques

were not reliable –

meaning that they were not be able to do what they were expected to do.

As a result of these problems a conference were held in 1960 in which

the term software

crisis was introduced.

And the term of Software Engineering was also coined in the same

conference.

In the late 1960s, it became clear that the development of software is

different from manufacturing other products. This is because employing

more manpower (programmers) later in the software development does

not always help speed up the development process. Instead, sometimes it

may have negative impacts like delay in achieving the scheduled targets,

degradation of software quality, etc. Though software has been an

P a g e | 5

important element of many systems since a long time, developing

software within a certain schedule and maintaining its quality is still

difficult.

History has seen that delivering software after the scheduled date or with

errors has caused large scale financial losses as well as inconvenience to

many. Disasters such as the Y2Kproblem affected economic, political,

and administrative systems of various countries around the world. This

situation, where catastrophic failures have occurred, is known

as software crisis. The major causes of software crisis are the problems

associated with poor quality software such as malfunctioning of software

systems, inefficient development of software, and the most important,

dissatisfaction amongst the users of the software.

http://ecomputernotes.com/software-engineering/software-crisis\

http://ecomputernotes.com/software-engineering/software-crisis/

P a g e | 6

What are software engineering principles?

Software Engineering Principles. Software engineering principles,

when executed consistently and properly, ensure that

P a g e | 7

your software development process continually runs smoothly,

efficiently and delivers high-quality applications.

Basically engineering comprises to planning, for doing the task

efficiently and can say, Software engineering is the study and

application of engineering to the design, development, and maintenance

of software.

What is law of diminishing returns?

The law of diminishing returns, also referred to as the law of

diminishing marginal returns, states that in a production process, as

one input variable is increased, there will be a point at which the

marginal per unit output will start to decrease, holding all other factors

constant.

What is an example of law of diminishing returns?

The law of diminishing marginal returns states that, at some point,

adding an additional factor of production results in smaller increases in

output. For example, a factory employs workers to manufacture its

products, and, at some point, the company operates at an optimal level.

FROM HANDOUT:

Whenever you perform any task like improving the efficiency of

the system, try to improve its quality or user friendliness then all these

things involve an

element of cost. If the quality of your system is not acceptable then with

the investment

of little money it could be improved to a higher degree. But after

reaching at a certain

level of quality the return on investment on the system’s quality will

become reduced.

Meaning that the return on investment on quality of software will be less

than the effort

or money we invest. Therefore, in most of the cases, after reaching at a

reasonable level

of quality we do not try to improve the quality of software any further.

P a g e | 8

benefit

cost

 what are the major activities involved in the development of

software.?

Known as the 'software development life cycle,' these six steps include

planning, analysis, design, development & implementation, testing &

deployment and maintenance. Let's study each of these steps to know

how the perfect software is developed.

1. Planning: Without the perfect plan, calculating the strengths and

weaknesses of the project, development of software is

meaningless. Planning kicks off a project flawlessly and affects its

progress positively.

2. Analysis: This step is about analyzing the performance of the

software at various stages and making notes on additional

requirements. Analysis is very important to proceed further to the

next step.

3. Design: Once the analysis is complete, the step of designing

takes over, which is basically building the architecture of the

project. This step helps remove possible flaws by setting a standard

and attempting to stick to it.

4. Development & Implementation: The actual task of

developing the software starts here with data recording going on in

the background. Once the software is developed, the stage of

implementation comes in where the product goes through a pilot

study to see if it’s functioning properly.

5. Testing: The testing stage assesses the software for errors and

P a g e | 9

documents bugs if there are any.

6. Maintenance: Once the software passes through all the stages

without any issues, it is to undergo a maintenance process wherein

it will be maintained and upgraded from time to time to adapt to

changes. Almost every software development Indian company

follows all the six steps, leading to the reputation that the country

enjoys in the software market today.

Lecture 01 complete notes by SONU ILYAS MUGHAL

 Lecture :02

 Introduction to Software Development

 What is Software development is a multi-activity process.?

Incremental Model is a process of software development where

requirements are broken down into multiple standalone modules of

software development cycle .Incremental development is done in steps

from analysis design, implementation,

testing/verification, maintenance.

What is software development process model?

In software engineering, a software development process is

the process of dividing software development work into distinct phases

to improve design, product management, and project management. ...

For example, there are many specific software development

processes that fit the spiral life-cycle model.

Software development process:

P a g e | 10

In software engineering, a software development process is

the process of dividing software development work into distinct phases

to improve design, product management, and project management. ...

For example, there are many specific software development

processes that fit the spiral life-cycle model.

What is software contruction and management ?

In general, software construction is mostly coding and debugging, but

it also involves construction planning, detailed design, unit testing,

integration testing, and other activities.

Maintenance

Correction, adaptation, enhancement

What is software framework ?

P a g e | 11

In computer programming, a software framework is an abstraction in

which software providing generic functionality can be selectively

changed by additional user-written code, thus providing application-

specifics oftware. A software framework provides a standard way to

build and deploy applications.

A framework, or software framework, is a platform for

developing software applications. It provides a foundation on

which software developers can build programs for a specific platform.

... A framework may also include code libraries, a compiler, and other

programs used in the software development process

What is software development loop?

The major stages of software development loop are described below:

•Problem Definition: In this stage we determine what is the problem agai

nst which we are going to develop software. Here we try to completely c

omprehend the issues and requirements of the software system to build.

•Technical Development: In this stage we try to find the solution of the pr

oblem on technical grounds and base our actual implementation on it. Th

is is the stage where a new system is actually developed that solves the pr

oblem defined in the first stage.

Solution Integration: If there are already developed system(s) available

with which our new system has to interact then those systems should also

 be the part of our new system. All those existing system(s) integrate with

 our new system at this stage.

Status Quo: After going through the previous three stages successfully,

when we actually

P a g e | 12

deployed the new system at the user site then that situation is called

status quo. But once

we get new requirements then we need to change the status qu After

getting new requirements we perform all the steps in the software

development loop again. The software developed through this process

has the property that this could be evolved and integrated easily with the

existing systems.

What is software development phases?

4 Stages of Software Development Process. ... Known

as software development life cycle, these steps include vision,

definition, development , maintenance.

Vision: Here we determine why are we doing this thing and what are our

business

objectives that we want to achieve.

Definition: Here we actually realize or automate the vision developed in

first phase. Here

we determine what are the activities and things involved.

Development: Here we determine, what should be the design of the

system, how will it

be implemented and how to test it.

Maintenance: This is very important phase of software development.

Here we control

the change in system, whether that change is in the form of

enhancements or defect

removel.

What is importance of software maintenance ?

Maintaining a software is as important as software development.

The regular maintenance of a system keeps it healthy by the time to

deal with challenges and changes in the business environment.

P a g e | 13

According to stats, “when it comes to software, 60% of costing involves

maintenance.

LECTURE 03

Requirement Engineering

What is Requirement Engineering in software development?

The Requirement Engineering (RE) is the most important phase of

the Software Development Life Cycle (SDLC). This phase is used to

translate the imprecise, incomplete needs and wishes of the potential

users of software into complete, precise and formal specifications.

Phases of SDLC in software engineering?

We can divide the whole process in 4 distinct phases namely vision,

definition, development, and maintenance.

During the vision phases, the focus is on why do we want to have this

system;

 during definition phase the focus shifts from why to what needs to be

built to fulfill the previously outlined vision;

during development the definition is realized into design and

implementation of the system;

and finally during maintenance all the changes and enhancements to

keep the system up and running and

adapt to the new environment and needs are carried out.

P a g e | 14

Requirement engineering mainly deals with the definition phase of the

system. Requirement engineering is the name of the process when the

system services and constraints are established. It is the starting point

of the development process with thefocus of activity on what and not

how.

Software Requirements Definitions

Jones defines software requirements as a statement of needs by a user

that triggers the development of a program or system

Alan Davis defines software requirements as a user need or necessary

feature, function, or attribute of a system that can be sensed from a

position external to the system.

According to Ian Summerville, requirements are a specification of

what should be implemented. They are descriptions of how the system

should behave, or of a system property or attribute. They may be a

constraint on the development process of the system.

IEEE defines software requirements as:

1. A condition or capability needed by user to solve a problem or

achieve an

objective.

2. A condition or capability that must be met or possessed by a system or

system

component to satisfy a contract, standard, specification, or other

formally imposed

document.

3. A documented representation of a condition or capability as in 1 or 2.

As can be seen, these definitions slightly differ from one another but

essentially say the

same thing: a software requirement is a document that describes all the

services provided

P a g e | 15

by the system along with the constraints under which it must operate.

Fred Brooks in his classical book on software engineering and project

management “The Mythical Man Month” emphasizes the importance

of requirement engineering and writes:

The hardest single part of building a software system is deciding

precisely what to build. No other part of the conceptual work is as

difficult as establishing the detailed technical requirements, including

all the interfaces to people, to machines, and to other software systems.

No other part of the work so cripples the system if done wrong. No

other part is more difficult to rectify later.

Role of Requirements:

Software requirements document plays the central role in the entire

software

development process. To start with, it is needed in the project planning

and feasibility

phase. In this phase, a good understanding of the requirements is needed

to determine the

time and resources required to build the software. As a result of this

analysis, the scope of

the system may be reduced before embarking upon the software

development.

Once these requirements have been finalized, the construction process

starts. During this

phase the software engineer starts designing and coding the software.

Once again, the

requirement document serves as the base reference document for these

activities. It can

be clearly seen that other activities such as user documentation and

testing of the system

would also need this document for their own deliverables.

On the other hand, the project manager would need this document to

monitor and track

P a g e | 16

the progress of the project and if needed, change the project scope by

modifying this

document through the change control process.

The following diagram depicts this central role of the software

requirement document in

the entire development process.

Lecture 04

Requirement Engineering-2

Some Risks from Inadequate Requirement Process:

List are below :

P a g e | 17

Lecture 05

 What is context diagram with example?

A context diagram is a data flow diagram that only shows the top

level, otherwise known as Level 0. At this level, there is only one visible

process node that represents the functions of a complete system in

regards to how it interacts with external entities. ... Shows the overview

of the boundaries of a system

What is a data flow diagram (DFD)?

A picture is worth a thousand words. A Data Flow Diagram (DFD) is

traditional visual representation of the information flows within a

system. A neat and clear DFD can depict a good amount of the system

requirements graphically. It can be manual, automated, or combination

of both.

It shows how information enters and leaves the system, what changes

the information and where information is stored. The purpose of a DFD

is to show the scope and boundaries of a system as a whole. It may be

used as a communications tool between a systems analyst and any

person who plays a part in the system that acts as the starting point for

redesigning a system.

It is usually beginning with a context diagram as the level 0 of DFD

diagram, a simple representation of the whole system. To elaborate

further from that, we drill down to a level 1 diagram with lower level

functions decomposed from the major functions of the system. This

could continue to evolve to become a level 2 diagram when further

analysis is required. Progression to level 3, 4 and so on is possible but

anything beyond level 3 is not very common. Please bear in mind that

P a g e | 18

the level of details for decomposing particular function really

depending on the complexity that function.

DFD Diagram Notations

Now we'd like to briefly introduce to you a few diagram notations

which you'll see in the tutorial below.

External Entity

An external entity can represent a human, system or subsystem. It is

where certain data comes from or goes to. It is external to the system

we study, in terms of the business process. For this reason, people used

to draw external entities on the edge of a diagram.

Process

A process is a business activity or function where the manipulation and

transformation of data takes place. A process can be decomposed to

finer level of details, for representing how data is being processed

within the process.

Data Store

A data store represents the storage of persistent data required and/or

produced by the process. Here are some examples of data stores:

membership forms, database table, etc.

P a g e | 19

Data Flow

A data flow represents the flow of information, with its direction

represented by an arrow head that shows at the end(s) of flow

connector.

Non-functional requirements are those requirements which impose

constraint on the system. They are sometimes called as “Quality

attributes”. For example, attributes such as performance, security,

usability, compatibility are not a feature or requirement of the system

but are a required characteristic.

P a g e | 20

Dear Student,

ILF (Internal logic File) is a user identifiable group of data which is

maintained with in the boundary of the application.

For more understanding about the following term visit the following link

http://www.informit.com/articles/article.aspx?p=19807&seqNum=5

http://www.softwaremetrics.com/FPLive/InternalLogicalFiles.pdf

https://people.eecs.ku.edu/~hossein/811/Papers/fpa-ref.pdf

Software Requirements – Definition – Jones

 The statement of needs by a user that triggers the development of a

program or system - Jones 1994

DEFINITION BY IEEE

1 A condition or capability needed by user to solve a problem or

achieve an objective.

2 A condition or capability that must be met or possessed by a system

or system component to satisfy a contract, standard, specification,

or other formally imposed document.

A documented representation of a condition or capability as in 1 or 2

https://people.eecs.ku.edu/~hossein/811/Papers/fpa-ref.pdf

P a g e | 21

DEFINITION BY JONE

The statement of needs by a user that triggers the development of a

program or system - Jones 199

BY DAVIS

• A user need or necessary feature, function, or attribute of a system

that can be sensed from a position external to that system - Alan

Davis 1993

Requirements are ... A specification of what should be implemented.

They are descriptions of how the system should behave, or of a system

property or attribute. They may be a constraint on the development

process of the system. - Sommerville 199

LEVEL OF REQUIRMENT

• Business Requirements

User will be able to correct spelling errors in a document efficiently

and it will be integrated with the existing system

• User Requirements

Finding spelling errors in the document and decide whether to

replace each misspelled word with the one chosen from a list of

suggested words.

• Functional Requirements

2. Find and highlight misspelled words.

P a g e | 22

3. Display a dialog box with suggested replacements.

4. Making global replacements.

• Non-Functional Requirements

It must be integrated into the existing word-processor which runs on

windows platform.

Ambiguous Requirements:

The operator identity consists of the operator name and password; the

password consists of six digits. It should be displayed on the security

VDU and deposited in the login file when an operator logs into the

system.”

Requirement Statement Characteristics

• Complete - Each requirement must fully describe the functionality

to be delivered.

Correct - Each requirement must accurately describe the functionality to

be built. A user requirement that conflict with a corresponding system

requirement isn’t correct

• Feasible - It must be possible to implement each requirement within

the known capabilities and limitations of the system and its

environment.

• Necessary -Each requirement should document something that the

customer really need or something that is required for conformance

to an external system requirement or standard.

• Prioritized - Assign an implementation priority to each

requirement, feature or use case to indicate how essential it is to a

particular product release.

• Unambiguous - All readers of a requirement statement should

arrive at a single, consistent interpretation of it

P a g e | 23

• Verifiable - Examine each requirement to see whether you can

devise a small number of tests or use other verification approaches,

such as inspection or demonstration, to determine whether the

requirement was properly implemented.

Mixed Level of Abstraction

The purpose of the system is to track the stock in the warehouse and

might be intermixed with when the loading clerk types in the

withdraw command he or she will communicate the order number,

the identity of the item to be removed, and the quantity removed.

The system will respond with a confirmation that the removal is

allowable.”

USE CASE MODEL

• Use Case

Boundaries of the system are defined by functionality that is

handled by the system.

Each use case specifies a complete functionality (from its initiation

by an actor until it has performed the requested functionality).

• Actor

An entity that has an interest in interacting with the system – a

human or some other device or system.

P a g e | 24

COMPONENTS OF USE CASE

• Priority

• Actor

• Summary

• Precondition

• Post- Condition

• Extend

• Normal Course of Events

• Alternative Path

• Exception

• Assumption

P a g e | 25

ACTIVITY DIAGRAM

• Animation sequence is on the slide.

• Use arrow for animation

• If it does not fit on one slide then u can use the scrolling

feature. Take care show at least three levels at a time (not less

in any case and then use the highlight feature.)

7TH LECTURE

TYPES OF MODEL

• Business Process Model

• State Transition Model

• Data Flow Model

Captures the flow of data in a system.

.

It helps in developing an understanding of system’s functionality.

.

What are the different sources of data, what different

transformations take place

on data and what are final outputs generated by these

transformations.

.

It describes data origination, transformations and consumption in a

system.

.

P a g e | 26

Information is organized and disseminated at different levels of

abstraction. Thus

this technique becomes a conduit for top down system analysis and

requirements

modeling.

Data Functions: EIs, EOs and EQs

• External Inputs

• External Outputs

• External InquirAy

P a g e | 27

DFD versus Flow Charts

Data Functions: EIs, EOs and EQs

• External Inputs

• External Outputs

• External InquirAy

• External Inputs

An external input (EI) is an elementary process that processes data

or control information that comes from outside the application

boundary. The primary intent of an EI is to maintain one or more

ILFs and/or to alter the behavior of the system.

P a g e | 28

• External Outputs

An external output (EO) is an elementary process that sends data or

control information outside the application boundary. The primary

intent of an external output is to present information to a user

through processing logic

• External Inquiry

An external inquiry (EQ) is an elementary process that sends data

or control information outside the application boundary. The

primary intent of an external inquiry is to present information to a

user through the retrieval of data

Function

Transactional Function Type

EI EO EQ

Alter the behavior of the system PI M N/A

Maintain one or more ILFs PI M N/A

Present information to a user M PI PI

P a g e | 29

Form of Processing Logic

Transactional Functional Type

EI EO EQ

1. Validations are performed c c c

2. Mathematical Formula and calculations are

performed

c m* n

3. Equivalent Values are converted c c c

4. Data is filtered and selected by using

specified criteria to compare multiple sets of

data.

c c c

5. Conditions are analyzed to determine which

are applicable

c c c

6. At least one ILF is updated m* m* n

7. At least one ILF or EIF is referenced c c m

8. Data or control information is retrieved c c m

9. Derived data is created c m* n

10. Behavior of system is altered m* m* n

11. Prepare and present information outside the

boundary

c m m

12. Capability to accept data or control

information that enters the application

boundary

m* c c

13. Resorting or rearranging a set of data c c c

Tabular Method An Example

If the taxable income is less than Rs. 60,000, there will be no income

tax. If the income exceeds Rs. 60,000 but is less than Rs. 150,000

then income tax will be charged at the rate of 7.5% for income

exceeding Rs. 60,000. If the income exceeds Rs. 150,000

Income Tax

Less than Rs. 60,000 0%

P a g e | 30

Between Rs. 60,000 and Rs. 150,000 7.5% of (Income - 60,000)

Between Rs. 150,000 and Rs. 300,000 12.5% of (Income - 150,000) + 6,750

Between Rs. 300,000 and Rs. 400,000 20% of (Income - 300,000) + 25,500

Between Rs. 400,000 and Rs. 700,000 25% of (Income - 400,000) + 45,500

Greater than Rs. 700,000 35% of (Income - 700,000) + 120,500

FOR MID TERMS NOTES

Lec#01 SUBJECTIVE

Q : What is software? (marks 2)

P a g e | 31

Ans. When we write a program for computer we named it as software.

But software is not just

a program; many things other than the program are also included in

software.

Q : How many items in software? Write name and explain .

(marks 3)

Ans. Program: The program or code itself is definitely included in

the software.

Data: The data on which the program operates is also considered as

part of the

software.

Documentation: Another very important thing that most of us forget

is

documentation. All the documents related to the software are also

considered as part

of the software.

Q : What is Engineering? (marks 2)

Ans. The process of productive use of scientific knowledge is called

engineering.

Q : Difference between computer science and software

engineering. (marks 5)

Ans. When we use physics in making machines like engines or cars

then it is called mechanical

engineering. And when we apply the knowledge of physics in

-

developing electronic devices then the process is called electrical

engineering. The relation of computer science with software

engineering is similar as the relation of physics with the electrical,

mechanical or civil engineering or for that matter the relation of any

basic science with any engineering field. So,This is the process of

utilizing our knowledge of computer science in effective production of

software systems.

Q : Difference between Software and Other Systems. (marks 3)

Ans. If the software has a bug and that bug was present in the older

CD then that will remain in the new one. This is a fundamental

P a g e | 32

difference between software and other systems.

Q : What is Software Crisis? (marks 3)

Ans. Software Crisis used to process the data of census. More

powerful

hardware resulted into the development of more powerful and complex

software. Those

very complex software was very difficult to write. So the tools and

techniques that were

used for less complex software became inapplicable for the more

complex software.

Q :What is software engineering as by IEEE? (marks 2)

Ans. The application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software;

that is, the application of engineering to software. And the IEEE stands

for International institute of Electric and Electronic Engineering.

-

Q : What is software engineering used in software production?

(marks 5)

Ans. Software

Engineering is the combination of all the tools, techniques, and

processes that used in software production.

 Programming Language

 Programming Language Design

 Software Design Techniques

 Tools

 Testing

 Maintenance

 Development

Q : Characteristics of well-Engineered software? (marks 3)

Ans.

 It is reliable

 It has good user-interface

 It has acceptable performance

 It is of good quality

 It is cost-effective

P a g e | 33

Q : What is Law of balancing act in software? (marks 5)

Ans.

Software Engineering is actually the balancing act. You have to

balance many things like cost, user friendliness, Efficiency, Reliability

etc. You have to analyze which one is the more important feature for

your software is it reliability, efficiency, user friendliness or something

-

else. There is always a trade-off among all these requirements of

software. It may be the case that if you try to make it more userfriendly

then the efficiency may suffer. And if you try to make it more

cost-effective then reliability may suffer. Therefore there is always a

trade-off between these characteristics of software. These requirements

may be conflicting

Lec#02 SUBJECTIVE

Q :.What is the Construction and major types of Construction?

(marks 5)

Ans. The construction activities are those that directly related to the

development of software,

e.g. gathering the requirements of the software, develop design,

implement and test the software etc. Some of the major construction

activities are listed below.

 Requirement Gathering

 Design Development

 Coding

 Testing

Q : Write the name of the major activities of management? (marks

3)

Ans.

 Project Planning and Management

 Configuration Management

 Software Quality Assurance

 Installation and Training

-

Q : Write the name of the major stage of software development

loop? (marks 2)

P a g e | 34

Ans.

1. Problem Definition

2. Technical Development

3. Solution Integration

4. Status Quo

Q : How many software Engineering phase? and write the name.

(marks 3)

Ans. There are four basic phase of S.E

1.Vision

2.Definition

3.Development

4.Maintenance

Lec#03 SUBJECTIVE

Q : Write the name of the role of software Requirement. (marks 3)

Ans.

1.Project Planning

2.project Tracking

3.Change Control

-

4.System Testing

5.User Dacumentation

6.Construction Process

Lec#04 SUBJECTIVE

Q : Write the name of the Requirement Statement Characteristics.

(marks 3)

Ans.

1. Complete

2. Correct

3. Feasible

4. Necessary

5. Prioritized

6. Unambiguous

7. Verifiable

Q: What is Ambiguity? (marks 2)

ANS: Ambiguity means that two different readers of the same

P a g e | 35

document interpret the

requirement differently.

Q: What is Gold-Plating? (Marks 3)

Ans: These called cool features. Which are not added in requirements

but developers add this. Gold-plating refers to features are not present

in the original requirement document

and in fact are not important for the end-user but the developer adds

-

them anyway

thinking that they would add value to the product.

Q: Write the names of level of requirements: (Marks 3)

ANS:

1. Business Requirements

2. User Requirements

3. Functional Requirements

4. Non-Functional Requirements

Q: What is Business Scope? (Marks 2)

ANS: In which document we write business requirements these called

business scope individual

Q: What is Requirement definition? (Marks 2)

Ans: In which document we write user requirements these called

requirement definition

Q: What is function specification? (Marks 2)

Ans: In which document we write functional/nonfunctional

requirements these called function specification

Q: Define Business requirement: (Marks 2)

User will be able to correct spelling errors in a document efficiently

and is will be integrated with he existing system.

Q: Define User requirement: (Marks 2)

-

Finding spelling errors in the document and decide whether to replace

each misspelled word with the one chosen from a list of suggested

words.

Q: Define Function requirement: (Marks 3)

• Find and highlight misspelled words

P a g e | 36

• Display a dialogue box with suggested replacements.

• Making global replacements.

Q: Define Non functional requirement: (Marks 2)

It must be integrated into the existing word-processor which runs on

windows platform.

Lec#05 SUBJECTIVE

Q : Write the Use Case Model Components? (marks 3)

Ans.

There are two use case model component

1.Cases = case specifies a complete functionality

2.Actors= An actor is an entity that has an

interest in interacting with the system. An actor can be a human or

some other device or

system.

Q: What is scope? (marks 3)

-

ANs: Project scope defines the concept and range of the proposed

solution, and limitations

identify certain capabilities that the product will not include. Clarifying

the scope and

limitations helps to establish realistic stakeholder’s expectations

Lec#06 SUBJECTIVE

Q :Write the name of Delete Information use case? (marks 2)

Ans. There are two existing use cases

1.Record Transaction

2.Cancel Transaction

Q : Write the name of Customer classes? (marks 2)

Ans. There are two classes.

1. Individual Customer

2. Corporate Customer

Q: What is Exception? (MARKS 2)

ANS: The system will not allow a user to delete information that is being

used

in the system.

P a g e | 37

The system will not allow a user to delete another user that has

subordinates.

Q: What is Assumption Act? (Marks 3)

ANS: Deleting information covers a permanent deletion of an entire set

of data

such as a

commission plan, user, group etc. Deleting a portion of an entire set

constitutes

modifying the set of data.

-

Deleted information is not retained in the system.

A user can only delete information that has not been used in the system.

Q: Write the names of limitations of use case? (Marks 2)

ANS:

 Usability

 Reliability

 Performance

 Portability

 Access

What is elaborated Use case? Explain it. (marks 3)

Answer:

After the derivation of the use case model, each use is elaborated by

adding detail of interaction between the user and the software system.

An elaborated use case has the following components: Use Case

Name, actors, summary, precondition, post-condition, extend, uses,

normal course of events, alternative path, exception, assumption.

Q: UML stands for…..?

ANS: Unified Modeling Language

Lec#07 SUBJECTIVE

Q: What is Source? (Marks 3)

Ans: Sources of requirements are the origins from where the

corresponding

business process is initiated. By this concept, one has to trace from a

requirement back to its origins to see who is involved in its initiation.

Q: What is Sink? (Marks 3)

P a g e | 38

-

ANS: Sink is the consumer of certain information. It is that entity which

provides a logical end to a business process. Thus, ‘sinks of requirements’

is a

concept that helps in identifying persons, organizations or external

systems

that gets certain functionality from the system.

Q.Write the name Techniques of Logical System Modals? (marks 3)

Ans.

1. User business processes

2. User activities for conducting the business processes

3. Processes that need to be automated

4. Processes which are not to be automated

Q : What is Business process model? (marks 2)

Ans. The first model that we will look at is called the process model. This

model provides a high-level pictorial view of the business process. This

model

can be used as a starting point in giving the basic orientation to the reader

of

the document.

Q: There are three models used write their names: (marks 2)

ANs:

 Business Model

 State transition Model

 Data flow Model

Lec#08 SUBEJCTIVE

Q: What is STD? (Marks 2)

STD stands for State transition diagrams. This is another technique to

document domain knowledge. This is an easy technique to design a work

flow

application.

-

Q : What Types of International Function Point User’s Group

(IFPUG)?

(marks 2)

P a g e | 39

Ans. There are three types

1. External Inputs

2. External Outputs

3. External Inquiry

Q : What is a data flow model? And explain it. (marks 5)

Ans.

Captures the flow of data in a system.

It helps in developing an understanding of system’s functionality.

What are the different sources of data, what different transformations take

place

on data and what are final outputs generated by these transformations.

It describes data origination, transformations and consumption in a

system.

Information is organized and disseminated at different levels of

abstraction.

Thus

this technique becomes a conduit for top down system analysis and

requirements

modeling.

Q : Write the types of shapes of notation. And explain it. (marks 5)

Ans. There are four shapes of notations

1. Process

What are different processes or work to be done in the system.

Transforms of data.

2. External Agent

External systems which are outside the boundary of this system. These are

represented

using the squares

3. Data Store

-

Where data is being stored for later retrieval.

Provides input to the process

Outputs of the processes may be going into these data stores.

4. Data Flow

Where the data is flowing.

P a g e | 40

Represents the movement of the data in a data flow diagram.

Q: What is External Inputs? (Marks 2)

Ans: An external input (EI) is an elementary process that processes data

or

control information

that comes from outside the application boundary.

Q: What is External Query? (Marks 3)

ANS: An external output (EO) is an elementary process that sends data or

control information

outside the application boundary. The primary intent of an external output

is to

present

information to a user through processing logic other than, or in addition

to, the

retrieval

of data or control information.

Q : What is the difference between DFD and Flow Chart. (marks 5)

Ans.

DFD

 Processes on a data flow can operate in parallel.

 Looping and branching are typically not shown.

 Each process path may have a very Different timing.

Flow Chart

 Processes on flowcharts are sequential.

-

 Show the sequence of steps as an algorithm and hence looping and

branching are part of flowcharts.

Lec#09 SUBJECTIVE

Q : Write the name of CRUD Operations? And explain it. (marks 3)

Ans.

These are four operations

Create: creates data and stores it.

Read: retrieves the stored data for viewing.

Update: makes changes in an stored data.

Delete: deletes an already stored data permanently.

P a g e | 41

Q : What is Common Mistakes in Data Flow Diagrams? (marks 2)

Ans.

 There is no input for the process Freeze Member Account

 In a similar manner, the process Create a New Member Account does

not

produce any output.

Lec#10 SUBJECTIVE

Q : What is GUI or Graphical user interface? (marks 2)

Ans. Graphical user interface is a computer interface that allows user to

interact with a device through graphical elements such as pictures and

animations, as opposed to text-based commands.

Q : What is Motivation for GUI? (marks 3)

Ans.

System users often judge a system by its interface rather than its

functionality

-

A poorly designed interface can cause a user to make catastrophic errors

Poor user interface design is the reason why so many software systems

are

never

Used

Q : Write the three types of Pitfalls of using GUIs in Functional

Specifications. (marks 3)

Ans.

UIs distract from business process understanding (what) to interfacing

details

(how)

Unstable requirements cause frequent modifications in UIs

An extra work to be done at the requirement level each time a GUI change

has to

be incorporated

Q :. What is Prototype? (marks 2)

Ans. Prototyping is yet another technique that can be used to reduce

customer

P a g e | 42

dissatisfaction at the requirement stage. A prototype is not the real

product. It

is rather just a real looking mock-up of what would be eventually

delivered

and might not do anything useful.

Cs 504 lec no 11

Q1: what parameters are used to measure and analyze design

quality? 5 marks

Answer:- (Page 71) A software design can be looked at from different

angles and different parameters

can be used to measure and analyze its quality. These parameters include

efficiency, compactness,

reusability, and maintainability. A good design from one angle may not

seem to be suitable when looked

from a different perspective. For example, a design that yields efficient

and compact code may not be

very easy to maintain. In order to establish whether a particular design is

good or not, we therefore have to

look at the project and application requirements

-

Question No: 2 What should be consideration for maintain

design? (Marks: 5)

Answer:- (Page 71) In order to make a design that is maintainable, it

should be understandable and the

changes should be local in effect. That is, it should be such that a change

in some part of the system

should not affect other parts of the system. This is achieved by applying

the principles of modularity,

abstraction, and separation of concern. If applied properly, these

principles yield a design that is said to be

more cohesive and loosely coupled and thus is easy to maintain.

Question No: 3 It is fact that good design makes

maintenance easier. Which design principle help this to be

achieved? (Marks: 3)

P a g e | 43

Answer:- (Page 71) A good design from one angle may not seem to be

suitable when looked from a

different perspective. For example, a design that yields efficient and

compact code may not be very easy

to maintain. In order to establish whether a particular design is good or

not, we therefore have to look at

the project and application requirements.

Q 4 :To manage the complexity of the system we need to apply the

principles of separation of concern. Discuss

briefly 2 MARKS

Answer: (Page 69) Separation of concern allows us to deal with different

individual aspects of a problem by

considering these aspects in isolation and independent of each other. A

complex system may be divided

into smaller pieces of lesser complexity called modules.

Q5: DEFINE Software Design Qualities ?

Ans : A software design can be looked at from different angles and

different parameters can be used to

measure and analyze its quality. These parameters include efficiency,

compactness, reusability, and

maintainability.

Q6 : what is data modeling ? 2 marks

Ans : s. Data modeling is an essential activity performed during the design

phase. This includes the

identification of data entities and their attributes, relationships among

these entities, and the appropriate

data structures for managing this data.

Lecture no 12

Q1:Define abstraction? 2 marks

-

Answer:- (Page 79) An abstraction is a technique in which we construct a

model of an entity based upon

its essential characteristics and ignore the inessential details.

Question No: 2 (Marks: 3) To manage the complexity of the system

we need to apply the principle of abstraction. Discuss briefly?

P a g e | 44

Answer:- (Page 79) An abstraction is a technique in which we construct a

model of an entity based upon

its essential characteristics and ignore the inessential details. The principle

of abstraction also helps us in

handling the inherent complexity of a system by allowing us to look at its

important external characteristic,

at the same time, hiding its inner complexity. Hiding the internal details

is called encapsulation.

Q 3 :What are architectural designs Process, explain briefly? 5 Marks

Answer:- (Page 79) System structuring: - System structuring is concerned

with decomposing the system into

interacting sub-systems. The system is decomposed into several principal

sub-systems and communications

between these sub-systems are identified. Control modeling:- Control

modeling establishes a model of the

control relationships between the different parts of the system. Modular

decomposition:- During this activity,

the identified sub-systems are decomposed into modules. This design

process is further elaborated in the

following section where architectural views are discussed.

Q4:Define cohesion 2 marks

. Answer: (Page 72) Cohesion is an internal property of a module.

Cohesion describes the intra-component

linkages while couple shows the inter-component linkages. Cohesion

measures the independence of a

module

Q 5:Define coupling ? 2 marks

Ans : Coupling is a measure of independence of a module or component.

Loose coupling means that

different system components have loose or less reliance upon each other.

Q 6:What is encapsulation? 2 marks

Ans : Hiding the internal details is called encapsulation

Question No: 7 (Marks: 5) What is action-oriented approach for

Software Design?

P a g e | 45

Answer: (Page 80) In the case of action-oriented approach, data is

decomposed according to

functionality requirements. That is, decomposition revolves around

function. In the OO approach,

decomposition of a problem revolves around data. Action-oriented

paradigm focuses only on the

functionality of a system and typically ignores the data until it is required.

Object- oriented paradigm

focuses both on the functionality and the data at the same time. The basic

difference between these two

is decentralized control mechanism versus centralized control mechanism

respectively. Decentralization

gives OO the ability to handle essential complexity better than action-

oriented approach.

Lecture no 13

Question No: 1 (Marks: 3) HOW DO YOU DETERMINE THAT

AN OBJECTIVE BELONGS

TO CERTAIN CLASS?

Answer:- (Page 85) The basic unit of object oriented design is an object.

An object can be defined as a

tangible entity that exhibits some well defined behavior. The structure and

behavior of similar objects are

defined in their common class. A class specifies an interface and defines

an implementation.

Q2: What is behavior driven perceptive of an objective? 3 marks

Answer:- (Page 85) Behavior is how an object acts and reacts in terms of

its state changes and message

passing. The behavior of an object is completely defined by its actions. A

message is some action that one

object performs upon another in order to elicit a reaction. The operations

that clients may perform upon an

object are called methods

Q3: What is the difference between Aggregation and

Association? 3 marks

P a g e | 46

Answer:- (Page 87) As compared to association, aggregation implies a

tighter coupling between the two

objects which are involved in this relationship. Therefore, one way to

differentiate between aggregation

and association is that if the two objects are tightly coupled, that is, if they

cannot exist independently, it is

an aggregation, and if they are usually considered as independent, it is an

association.

Q4 : define Relationship Among Objects ? 2 marks

Ans:The object model presents a static view of the system and illustrates

how different objects collaborate with

one another through patterns of interaction. Inheritance, association and

aggregation are the three interobject

relationships specified by the object model.

Q5 :Define the object model?

Ans:The elements of object oriented design collectively are called the

Object Model. The object model

encompasses the principles of abstraction, encapsulation, and hierarchy

or

inheritance.

Question No: 25 (Marks: 5) Code example of High Coupling

Answer: Click here for detail Tightly Coupled Example: public class

CartEntry { public float Price; public int

Quantity; } public class CartContents { public CartEntry[] items; } public

class Order { private CartContents

cart; private float salesTax; public Order(CartContents cart, float

salesTax) { this.cart = cart; this.salesTax =

salesTax; } public float OrderTotal() { float cartTotal = 0; for (int i = 0; i

< cart.items.Length; i++) { cartTotal +=

cart.items[i].Price * cart.items[i].Quantity; } cartTotal +=

cartTotal*salesTax; return cartTotal; } }

P a g e | 47

Lecture no 14

Q1: What is Textual Analysis? Explain it 3 marks

Answer:- (Page 90) Textual analysis was developed by Abbot and then

extended by Graham and others. In

this technique different parts of speech are identified within the text of the

specification and these parts

are modeled using different components.

Q2 : name the four layers of the OO design pyramid ? 2 marks

The four layers of the OO design pyramid are:

1) The subsystem layer.

2) The class and object layer

3) The message layer

4) The responsibility layer

Q 3: define problem statement? 3 marks

A simple cash register has a display, an electronic wire with a plug, and a

numeric keypad, which has keys

for subtotal, tax, and total. This cash storage device has a total key, which

triggers the release on the

drawer..

Q4: Explain the four layer of the OO design pyramid ? 5 marks

1) The subsystem layer. Contains a representation of each of the

subsystems that enable the software to

achieve its customers defined requirements and to implement the

technical infrastructure that supports

customer requirements.

2) The class and object layer. Contains the class hierarchies that enable

the system to be created using

generalization and increasingly more targeted specializations. The layer

also contains design

representations for each object.

3) The message layer. Contains the details that enable each object to

communicate with its collaborators.

P a g e | 48

This layer establishes the external and internal interfaces for the system

. 4) The responsibility layer. Contains the data structures and algorithmic

design for all attributes and

operations for each object.

Lecture no 16

No: 1 (Marks: 5) How the objects are identified in peter codd’s

technique?

Answer: (Page 93) Objects are identifying in the following way.

Select actors : Actors are people and organizations that take part in the

system under

consideration. Examples of actors are: person, organization (agency,

company, corporation,

foundation)

. Select Participants A participant is a role that each actor plays in the

system under

consideration. Examples of participants are: agent, applicant, buyer,

cashier, clerk,

customer, dealer, and distributor. Etc.

Select Places :Places are where things come to rest or places that contain

other objects.

Examples of places are: airport, assembly-line, bank, city, clinic, country,

depot, garage and

hospital etc

. Select Transactions : Transactions are the “events”. These transactions

usually come from a

window (GUI), some object which monitors for significant event and logs

that information, or

a another system that interacts with the system under consideration and

logs some

information. Examples of transactions are: agreement, assignment,

authorization, contract,

delivery, deposit, incident, inquiry, order, payment, problem report,

purchase and sales etc.

P a g e | 49

Select Container Objects Containers are objects that hold other objects.

e.g. bin, box,

cabinet, folder, locker, safe, shelf, etc. Therefore a place is also a container

but every

container need not be a place.

Select Tangible things Take a “walk” through the system and select

“tangible” things around

you used in the problem domain. These may be characterized as all the

remaining (not yet

selected) “nouns” that make up the problem domain. Examples are:

account, book,

calendar, cash box, cash drawer, item, plan, procedure, product, schedule,

skill, tool, etc

Lecture no 17

Q1: what is Identify Structures?

Ans : A structure is a manner of organization which expresses a

semantically strong

organization within the problem domain.

Q2: how many types of Identify Structures?

Ans : There are two type of structures

Generalization-Specialization (Gen-Spec) and whole-part.

Q3 : Define Attributes - ?

Ans : The first two activities would identify most of the objects (classes)

in the problem

domain. Now is the time to think about the role and responsibilities of

these objects. The

first thing to consider is their attributes,

Q4 : Show Collaborations (associations and aggregations) Who I

know? 5 marks

The second step in establishing each object’s responsibility is to identify

and show how

P a g e | 50

this object collaborates with other objects, i.e., who it knows. These

collaborations can be

identified with the help of the following steps:

1. For an actor, include an object connect to its participants (association).

2. For a participant, include an object connection to its actor (already

established) and

its

transactions (association).

3. For a location, include object connections to objects that it can hold

(association), to

its part objects (aggregation), and to the transactions that are taking place

at that

location (association).

4. For transactions, include object connections to its participants (already

established),

its line items (aggregation), and its immediate subsequent transaction

(aggregation).

5. For a transaction line item, include object connections to its transaction

(already

established), its item (association), a companion

Q5 : GIVE EXAMPLE ARE ATTRIBUTES ?

Ans : Examples of attributes are: number, name,

address, date, time, operational state, phone, status, threshold, type, etc

lecture no 19

Q 1:Keeping in mind the Connie's case study, what rule of thumbs

was identified,

list them down ? 5 marks

Ans :

Who I Know - Rules of

Thumb

1 :

an actor knows about its participants person knows

about cashier

P a g e | 51

2 :

a transaction knows about its participants a session knows about its

register and cashier

3

A transaction contains its transaction line items sale contains its

sales line items

4

A transaction knows its sub transactions session knows about its sales sale

knows

about its payments

5

-

A place knows about its transactions store knows about

its sessions

6

A place knows about its descriptive objects store knows about

its tax categories

7

A container knows about its contents a store knows about its cashiers,

items, and registers

Q2:Keeping connie’s case study in mind, as discussed in lecture, list

down whole parts structures

which were identified. Answer: (Page 100) 3 marks

Identify Whole-Part Structures

1 :

1 :A store as a whole is made up of cashiers,

registers, and items.

2 :PA register contains a

cash drawer.

3: A sale is constituted of sale

line items.

Q3 : Define data flow diagram ? 2 marks

P a g e | 52

Answer: (Page 100) A data flow diagram (DFD) is a graphical

representation of the "flow" of

data through an information system, modeling its process aspects. Often

they are a

preliminary step used to create an overview of the system which can later

be elaborated.

Lecture no 20 :

Q1: Why we use series of diagram? 3 marks

A series of diagrams can be used to describe the dynamic behavior of an

object-oriented

-

system. This is done in terms of a set of messages exchanged among a set

of objects

within a context to accomplish a purpose.

Q2 : Define the purpose of Interaction diagrams is to ? 3 marks

The purpose of Interaction diagrams is to:

Model interactions between objects

Assist in understanding how a system (a use case) actually works

Verify that a use case description can be supported by the existing classes

Identify responsibilities/operations and assign them to classes

Q3 : Define life line of objects ? 2 marks

Ans The boxes denote objects (or classes), the solid lines depict messages

being sent from one

object to the other in the direction of the arrow, and the dotted lines are

called life-lines of

objects..

Q4 : write the syntax used for naming objects in a sequence diagram

? 3 marks

The syntax used for naming objects in a sequence diagram is as follows:

syntax: [instanceName][:className]

Name classes consistently with your class diagram (same classes).

P a g e | 53

Include instance names when objects are referred to in messages or when

several

Lecture No 21:

(Q) How Many Types of messages are there?

Ans. There Are four type of messages are there.

(1) Synchronous

(2) Asynchronous

(3) Create

(4) Destroy

-

Q No: 2. what is Synchronous Messages?

Synchronous messaging describes communications that takes place

between two applications or systems, where the system places a message

in

a message queue (also called an Event Queue in enterprise messaging

systems) and then waits for a message response before it continues

processing. Contrast with asynchronous messaging. They are denoted by

the full arrow.

Synchronous messaging is also known as synchronous communication.

(Q3) What is Asynchronous Messages?

Ans. Asynchronous messages are “signals,” denoted by a half arrow. They

do not block the caller.

Asynchronous messages typically perform the following actions:

Create a new threat.

Create a new object.

Communication with threat is already

running.

Q4. Object Creation and Destruction

Ans. An object may create another object via a <<create>> message.

Similarly an object may

Destroy another object via a <<destroy>> message. An object may also

destroy itself. One

P a g e | 54

Should avoid modeling object destruction unless memory management is

critical.

Q: No 5. Collaboration Diagrams depict Dynamic behavior of the

system, explain

it.

Ans.

Collaboration diagrams can also be used to depict the dynamic behavior

of a system. They show how

objects interact with respect to organizational units (boundaries!). Since a

boundary shapes

communication between system and outside world e.g. user interface or

other system, collaboration

diagrams can be used to show this aspect of the system. The sequence of

messages determined by

numbering such as 1, 2, 3, 4, This shows which operation calls which

other operation.

Collaboration diagrams have basically two types of components: objects

and messages.

Objects exchange messages among each-other. Collaboration diagrams

can also show

synchronous, asynchronous, create, and destroy message using the same

notation as used

In sequence diagrams. Messages are numbered and can have loops

Q: No 6. Evaluating the Quality of an Object-Oriented Design.

Ans. Judging the quality of a design is difficult. We can however look at

certain object-

Oriented design attributes to estimate its quality. The idea is to analyze

the basic principle

Of encapsulation and delegation to judge whether the control is

centralized or distributed,

Hence judging the coupling and cohesion in a design. This will tell us how

maintainable a

Design is.

P a g e | 55

You may also recall our earlier discussion of coupling and cohesion. It

can be easy to see That OO design yield more cohesive and loosely

coupled systems.

Lecture No 22:

Q: No 1. What is Software Architecture?

Ans. Software architecture refers to the fundamental structures of a

software system, the discipline of creating such

structures, and the documentation of these structures. These structures are

needed to reason about the software

system. Each structure comprises software elements, relations among

them, and properties of both elements and

relations,[1] along with rationale for the introduction and configuration of

each element. The architecture of a software

system is a metaphor, analogous to the architecture of a building.

Q: No 2. Why is architecture important?

Ans. If a project has not achieved a system architecture, including its

rationale, the Project should not proceed to full-scale system

development. Specifying the Architecture as a deliverable enables its use

throughout the development and Maintenance process.

Q: 3. No Architectural design process

Ans. Just like any other design activity, design of software architecture is

a creative and

Iterative process. This involves performing a number of activities, not

necessarily in any

Particular order or sequence. These include system structuring, control

modeling, and

Modular decomposition.

Q: No 4. Architectural Attributes

Ans. Software architecture must address the non-functional as well as the

functional Requirements of the software system. This includes

performance, security, safety, Availability, and maintainability.

P a g e | 56

Q: No 5. What Is Performance in Architectural Design?

Ans. – Performance can be enhanced by localizing operations to minimize

sub-System communication. That is, try to have self-contained modules

as Much as possible so that inter-module communication is minimized.

Q: No 6. What is Security in Architectural Design?

Ans. – Security can be improved by using a layered architecture with

critical Assets put in inner layers.

Q: No. 7. what is Safety in Architectural design

Ans. – Safety-critical components should be isolated

Q: No what is Availability in Architectural design

Ans. – Availability can be ensured by building redundancy in the system

and Having redundant components in the architecture.

Q: No 8. What is Maintainability in Architectural design?

Ans. – Maintainability is directly related with simplicity. Therefore,

Maintainability can be increased by using fine-grain, self-contained

Components.

Q: No 9. What are architectural designs Process,

explain briefly?

Ans. Just like any other design activity, design of software architecture is

a creative and

Iterative process. This involves performing a number of activities, not

necessarily in any

Particular order or sequence. These include system structuring, control

modeling, and

Modular decomposition.

System structuring: - System structuring is concerned with decomposing

the system into interacting

sub-systems. The system is decomposed into several principal sub-

systems and communications

between these sub-systems are identified.

P a g e | 57

Control modeling: - Control modeling establishes a model of the control

relationships between the

different parts of the system.

Modular decomposition: - During this activity, the identified sub-

systems are decomposed into

modules. This design process is further elaborated in the following section

where architectural views

are discussed.

Q: No 10. Differentiate between architectural design and system

architecture in a single line?

Ans. Architecture faces towards strategy, structure and purpose, towards

the abstract while Design

faces towards implementation and practice, towards the concrete.

